**M.S.** Thesis Defense

#### **Analysis of fNIRS Signals**

Ceyhun Burak Akgül, EE

Boğaziçi University, İstanbul January 2004

## Preview

- Cognitive Neuroscience
- Computer-based Experimental Procedures
- PET, fMRI
- Functional Near InfraRed Spectroscopy
- Objective of the Present Work

## Outline

## Introduction

- Statistical Characterization of fNIRS Data
- Time-Frequency Characterization
- Functional Activity Estimation
- Conclusion

# Functional Neuroimaging

- PET, fMRI
  - Non-invasive
  - Measure correlates of neuronal activity
  - High spatial, but low temporal resolution
  - Expensive
  - Uncomfortable for patients or volunteers

# Functional Neuroimaging

#### – fNIRS

- Non-invasive
- Measure correlates of neuronal activity
- Low spatial, but potentially high temporal resolution
- Inexpensive
- Less distressing for patients or volunteers

#### The fNIRS Principle

- NIR light (650-950 nm) can pass through the skull and reach the cerebral cortex up to a depth of 3 cm
- NIR light absorption spectra of HbR and  $HbO_2$  are distinct
- Using the modified Beer-Lambert law, it's possible to quantify the changes in the concentrations of these hemoglobin agents





Analysis of fNIRS Signals

- Motivation behind fNIRS Study
  - Both fMRI and fNIRS measure a correlate of oxygen availability in a particular brain region
  - *HbR*↓, then BOLD signal of fMRI↑
    [Boynton et al., 1996]
  - Simultaneous BOLD and fNIRS recordings do exhibit strong correlations

[Strangman et al., 2002]

#### BOLD: Blood Oxygen Level Dependent

- Motivation behind fNIRS Study
  - Two problems of fMRI



- Activity Detection  $\rightarrow$  functional activity maps
- Brain Hemodynamic Response (BHR) Function Estimation



#### Motivation behind fNIRS Study

- From the perspective of fNIRS
  - Activity detection is not an issue unless more spatial resolution is provided
  - BHR function may be estimated more accurately thanks to high temporal resolution
  - fNIRS can be more efficiently used in characterizing the baseline physiology
    - HbO<sub>2</sub>, HbR, blood volume, oxygenation

## Outline

- Introduction
- Statistical Characterization of fNIRS Data
- Time-Frequency Characterization
- Functional Activity Estimation
- Conclusion



- How are data acquired?
- Does the signal result from a stationary process?
- Is the signal process Gaussian?

- The fNIRS Device
  - Light sources and photodetectors
  - Measurements at 730 nm, 805 nm, 850 nm
  - Modified Beer-Lambert Law



Saturday, November 24, 2007

Analysis of fNIRS Signals

- Target Categorization task
  - Context stimuli 00000
    - Avoids habituation effects
    - Comes every 1.5 secs
  - Target stimuli XXXXX
    - Expected to trigger functional activity  $\rightarrow$  BHR
    - 8 sessions, 8 trials per session  $\rightarrow$  64 instances per experiment
    - In a given session, random onsets every 18-29 secs
    - The target arrival pattern is the same for every session
  - − Both types last 0.5 sec  $\rightarrow$  impulsive stimulus
- Sampling rate  $F_s = 1.7$  Hz
- An experiment lasts ~25 minutes
- 16×3 optical density signals per experiment, 5 subjects

Saturday, November 24, 2007

Analysis of fNIRS Signals

- Preprocessing of fNIRS Data
  - Elimination of corrupted data
  - Applying MBLL to the raw measurements at 730 nm and 850 nm
    - HbR
    - ✓ HbO<sub>2</sub>
    - 72 Hb-component signals remain

Trend removal by moving average filtering





- ✓ How are data acquired?
- Does the signal result from a stationary process?
- Is the signal process Gaussian?

# Stationarity of fNIRS-HbO<sub>2</sub> Signals

- Strict-sense vs. Wide-sense
- Graphical investigation
  - Profiles of short-time estimates of statistics up to 4<sup>th</sup> order
    - Mean
    - Variance
    - Skewness
    - Kurtosis
- Run tests

#### Graphical Investigation of Stationarity



Saturday, November 24, 2007

17

#### Run tests at significance level $\alpha = 0.01$

-50 frames of length 2N per signal

| Frame<br>length<br>2N | Number of times<br>the stationarity hypothesis | Test statistic R |           | The range of $R$ for the stationarity hypothesis |  |
|-----------------------|------------------------------------------------|------------------|-----------|--------------------------------------------------|--|
|                       | is retained                                    | Mean             | Std. Dev. | to be retained                                   |  |
| 400                   | 1                                              | 39               | 28        | 177-224                                          |  |
| 200                   | 19                                             | 22               | 16        | 84-117                                           |  |
| 100                   | 82                                             | 14               | 9         | 39-62                                            |  |
| 50                    | 326                                            | 9                | 6         | 17-34                                            |  |
| 30                    | 793                                            | 7                | 4         | 9-22                                             |  |

• 3600 cases to test

HbO<sub>2</sub> signals, definitely, are non-stationary unless short observation window is chosen

Saturday, November 24, 2007

- ✓ How are data acquired?
- ✓ Does the signal result from a stationary process?
  - → The signals are globally non-stationary
  - → Short-time processing is plausible (30-50 samples)

## Is the signal process Gaussian?

- Graphical Investigation of Gaussianity (normality) Normal probability plot
- Hypothesis Testing
  - $H_0$ : Gaussianity Hypothesis
  - Kolmogorov-Smirnov (K-S) Test Jarque-Bera (J-B) Test  $\rightarrow$  require i.i.d. data

- Hinich's test  $\rightarrow$  designed for time-series data

#### Graphical Investigation of Normality



Saturday, November 24, 2007

Analysis of fNIRS Signals

## K-S Test Results

|                                                                              | Signal Set                                                    |                                                  |                                         |                                                               |                                                               |                                                               |
|------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
|                                                                              | $\Gamma^1$                                                    | $\Gamma^{2}$                                     | $\Gamma^3$                              | $\Gamma^4$                                                    | $\Gamma^{5}$                                                  | Γ                                                             |
| Number of<br>records                                                         | 150                                                           | 120                                              | 130                                     | 160                                                           | 160                                                           | 720                                                           |
| Number of<br>times<br>H <sub>0</sub> retained                                | 72                                                            | 99                                               | 81                                      | 84                                                            | 33                                                            | 398                                                           |
| <b>Result of the</b><br><b>combined tests</b><br>(based on P <sub>ks</sub> ) | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-11</sup> | Reject H <sub>0</sub> at<br>significance<br>0.02 | Reject $H_0$ at significance $10^{-10}$ | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-25</sup> | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-79</sup> | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-67</sup> |

#### J-B Test Results

|                                                                       | Signal Set                                                    |                                                  |                                                               |                                                               |                                                                |                                                |
|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|
|                                                                       | $\Gamma^1$                                                    | $\Gamma^{2}$                                     | $\Gamma^{3}$                                                  | $\Gamma^4$                                                    | $\Gamma^{5}$                                                   | Γ                                              |
| Number of<br>records                                                  | 150                                                           | 120                                              | 130                                                           | 160                                                           | 160                                                            | 720                                            |
| Number of<br>times<br>H <sub>0</sub> retained                         | 44                                                            | 43                                               | 20                                                            | 24                                                            | 4                                                              | 143                                            |
| <b>Result of the</b><br><b>combined tests</b><br>(based on $P_{jb}$ ) | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-36</sup> | Reject H <sub>0</sub> at significance $10^{-25}$ | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-60</sup> | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-91</sup> | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-225</sup> | Reject $H_0$ at<br>significance<br>$10^{-286}$ |

 J-B test has a more pronounced tendency to reject Gaussianity

Saturday, November 24, 2007

Analysis of fNIRS Signals

## Hinich Test Results

|                                                                               | Signal Set                                                     |                                                               |                                                                |                                                               |                                                               |                                               |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|
|                                                                               | $\Gamma^1$                                                     | $\Gamma^{2}$                                                  | $\Gamma^{3}$                                                   | $\Gamma^4$                                                    | $\Gamma^{5}$                                                  | Г                                             |
| Number of<br>records                                                          | 750                                                            | 600                                                           | 650                                                            | 800                                                           | 800                                                           | 3600                                          |
| Number of<br>times<br>H <sub>0</sub> retained                                 | 236                                                            | 238                                                           | 297                                                            | 468                                                           | 359                                                           | 1583                                          |
| <b>Result of the</b><br><b>combined tests</b><br>(based on P <sub>hin</sub> ) | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-165</sup> | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-83</sup> | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-103</sup> | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-43</sup> | Reject H <sub>0</sub> at<br>significance<br>10 <sup>-88</sup> | Reject H <sub>0</sub> at<br>significance<br>0 |

- ✓ How are data acquired?
- ✓ Does the signal result from a stationary process?

→ The fNIRS-*HbO*<sub>2</sub> signals are globally non-stationary

- → Short-time processing is plausible (30-50 samples)
- ✓ Is the signal process Gaussian?
  → The fNIRS-*HbO*<sub>2</sub> process is non-Gaussian

# Outline

- Introduction
- Statistical Characterization of fNIRS Data
- Time-Frequency Characterization
- Functional Activity Estimation
- Conclusion



## The Typical fNIRS-HbO<sub>2</sub> Spectrum

- Selection of Relevant Frequency Bands
- Does fNIRS measure cognitive activity?

Analysis of fNIRS Signals

# The Typical fNIRS-HbO<sub>2</sub> Spectrum

- 3D Normalized Intensity Graph



Saturday, Novembe 24, 2007



24, 2007

#### **Time-Frequency Characterization**

- The Typical fNIRS-HbO<sub>2</sub> Spectrum
  - Intensity Level Diagram



- ✓ The Typical fNIRS-*HbO*<sub>2</sub> Spectrum
  - → The spectrum is essentially low-pass (<100 mHz)
  - ➔ In the range of 700-850 mHz, there is a slight increase in the time-frequency plane

#### Selection of Relevant Frequency Bands

Does fNIRS measure cognitive activity?

- Selection of Relevant Frequency Bands
  - Parsing the signal spectrum into dissimilar subbands
  - Relative power profile per band

$$R_n(t) = \frac{I_n(t)}{I(t)}$$

 $I_n(t)$ : Time - series of the power at the  $n^{\text{th}}$  subband I(t): Time - series of the total power

Saturday, November 24, 2007

Analysis of fNIRS Signals

Selection of Relevant Frequency Bands
 Dissimilarity is measured by

$$d(\mathbf{R}_{p},\mathbf{R}_{q}) = 1 - \frac{\langle \mathbf{R}_{p},\mathbf{R}_{q} \rangle}{\left\| \mathbf{R}_{p} \right\| \left\| \mathbf{R}_{q} \right\|}$$

- We evaluate  $R_n(t)$  in

0–10 mHz, 10–20 mHz, ···, 240–250 mHz, 250-850 mHz

25 narrow bands of width 10 mHz One large band

Saturday, November 24, 2007

- Selection of Relevant Frequency Bands
  - Agglomerative clustering: For a given signal
    - i. Assign each  $R_n(t)$  to its own cluster
    - ii. Compute all pairwise distances between each cluster
    - iii. Merge the two clusters until only one cluster remains, i.e., return to ii.
      - Single linkage criterion
  - The end product is a dendrogram



24, 2007

#### **Time-Frequency Characterization**

#### Selection of Relevant Frequency Bands



#### Selection of Relevant Frequency Bands

- − We have 72 signals  $\rightarrow$  72 different partitionings
- Each partitioning consists of 3 subbands  $\rightarrow$  72×3 candidates We count the number of occurences for each subband
- We identify possible partitionings where
  - The bands are non-overlapping
  - · The bands collectively cover the whole spectrum

| Spectrum partitioning                        | Votes | Percentage |
|----------------------------------------------|-------|------------|
| 0-30 mHz, 30-40 mHz, 40-250 mHz, 250-850 mHz | 142   | 65.7 %     |
| 0-40 mHz, 40-250 mHz, 250-850 mHz            | 114   | 52.8 %     |
| 0-30 mHz, 30-250 mHz, 250-850 mHz            | 86    | 39.8 %     |
| 0-40 mHz, 40-850 mHz                         | 63    | 29.2 %     |
| 0-50 mHz, 50-250 mHz, 250-850 mHz            | 48    | 22.2 %     |

Saturday, November 24, 2007

#### The Canonical Bands of fNIRS Signals


- ✓ The Typical fNIRS-*HbO*<sub>2</sub> Spectrum
  - → The spectrum is essentially low-pass (<100 mHz)
  - ➔ In the range of 700-850 mHz, there is a slight increase in the time-frequency plane

# ✓ Selection of Relevant Frequency Bands → A-Band: 0-30 mHz, B-Band: 30-40 mHz, C-Band: 40-250 mHz, D-Band: 250-850 mHz

## Does fNIRS measure cognitive activity?

Saturday, November 24, 2007

#### Evidence of cognitive activity

- Cognitive stimuli are quasi-periodic
  - Inter-Target Interval (ITI): uniform in (30,50) samples
- We expect to find evidences of such periodicity in the *HbO*<sub>2</sub> signals by LSPE
- Bands B and C are more likely to reflect this information
  - We prefilter the signals in the BC-Band, i.e., 30-250 mHz
  - Prefiltering helps also to mitigate non-stationarity

LSPE: Least-Squares Periodicity Estimation

Saturday, November 24, 2007

#### Evidence of cognitive activity

- Treatment of real data
  - session-by-session
    - Another way to mitigate non-stationarity
  - in the (20, 60) samples range
  - Local maxima selection, (-3, 3) samples range
  - A small threshold at 0.1
  - For each session, we let the algorithm return the period with largest confidence
    - 8 candidate periods per signal

#### • $S_{in}$ and $S_{out}$ profiles for Subject 4



#### Evidence of cognitive activity

#### Responsive subjects/photodetectors

| Subject |               | Photodetector quadruples |                   |                     |                  |  |
|---------|---------------|--------------------------|-------------------|---------------------|------------------|--|
| Index   | Alias         | left<br>(1-4)            | mid-left<br>(5-8) | mid-right<br>(9-12) | right<br>(13-16) |  |
| 1       | AA005         | 3 and 4                  | 5 to 8 (all)      | 10, 11 and 12       | 16               |  |
| 2       | GY002         | -not any-                | 8                 | 9,11 and 12         | 13 to 16 (all)   |  |
| 3       | KI003         | 4                        | 5 to 8 (all)      | 9 to 12 (all)       | 15 and 16        |  |
| 4       | KP001         | 1 to 4 (all)             | 5 to 8 (all)      | 9, 11 and 12        | 13 to 16 (all)   |  |
| 5       | <b>MJ00</b> 7 | 1 to 4 (all)             | 5 and 7           | 9, 11 and 12        | 13 to 16 (all)   |  |

#### Evidence of cognitive activity

 Inside periodicities averaged over all subjects for a given photodetector



Saturday, November 24, 2007

#### Evidence of cognitive activity

Inside periodicities averaged over all photodetectors for a given subject



- ✓ The Typical fNIRS-*HbO*<sub>2</sub> Spectrum
  - → The spectrum is essentially low-pass (<100 mHz)
  - ➔ In the range of 700-850 mHz, there is a slight increase in the time-frequency plane

# ✓ Selection of Relevant Frequency Bands → A-Band: 0-30 mHz, B-Band: 30-40 mHz, C-Band: 40-250 mHz, D-Band: 250-850 mHz

✓ Does fNIRS measure cognitive activity?

➔ For some subjects/detectors, we encountered to the evidence of protocol-induced periodicity

Saturday, November 24, 2007

# Outline

- Introduction
- Statistical Characterization of fNIRS Data
- Time-Frequency Characterization
- Functional Activity Estimation
- Conclusion

## The problem

- We try to estimate cognitive-activity related waveforms (CArW)
- CArW are the counterparts of BHR
- We use fNIRS vectors that consist of *m* signal samples just after the target onsets

- We consider two approaches
  - Independent Component Analysis (ICA)
  - Clustering of cubic B-spline coefficients
  - We consider different types of datasets

| Subject   | Photodetector quadruples             |                          |                         |                       |               |  |  |
|-----------|--------------------------------------|--------------------------|-------------------------|-----------------------|---------------|--|--|
| Index     | left<br>(1-4)                        | mid-left<br>(5-8)        | mid-right<br>(9-12)     | right<br>(13-16)      | all<br>(1-16) |  |  |
| 1         | (H1): $X_{left}^1$                   | (H1): $X^{1}_{mid-left}$ | (H1): $X^1_{mid-right}$ | (H1): $X_{right}^{1}$ | (H2): $X^1$   |  |  |
| 3         | (H1): X <sup>3</sup> <sub>left</sub> | (H1): $X^3_{mid-left}$   | (H1): $X^3_{mid-right}$ | (H1): $X_{right}^3$   | (H2): $X^{3}$ |  |  |
| 4         | (H1): X <sup>4</sup> <sub>left</sub> | (H1): $X^4_{mid-left}$   | (H1): $X^4_{mid-right}$ | (H1): $X_{right}^4$   | (H2): $X^4$   |  |  |
| 1,3 and 4 | (H3): X <sub>left</sub>              | (H3): $X_{mid-left}$     | (H3): $X_{mid-right}$   | (H3): $X_{right}$     |               |  |  |

We rank the estimated vectors based on their similarity to the Gamma waveform model

Saturday, November 24, 2007

#### Ranking the estimated vectors

The Gamma Function Model

$$h(t) = \begin{cases} A(t-T)^2 e^{-(t-T)/\tau} & \text{for } t \ge T \\ 0 & \text{for } t < T \end{cases}$$





$$\min_{A,T,\tau} \arg \sum_{l=1}^{m} \left[ z_l - h_l(A,T,\tau) \right]^2$$

Saturday, November 24, 2007



49

## ICA Settings

| Parameter                         | Value (or range)                 |  |  |
|-----------------------------------|----------------------------------|--|--|
| Dimensionality of input vectors m | 40                               |  |  |
| Reduced dimension <i>n</i>        | 4                                |  |  |
| Number of basis vectors n         | 4                                |  |  |
| Range for delay T                 | (0,3) seconds or $(0,5)$ samples |  |  |
| Range for time constant $	au$     | (1,4)                            |  |  |

#### ICA Results: (H1)-type datasets subject-by-subject



Saturday, November 24, 2007

#### ICA Results: (H1)-type datasets quadruple-by- quadruple



Saturday, November 24, 2007



Saturday, November 24, 2007

Clustering Approach

$$X \longrightarrow \begin{array}{c} Feature \\ Extraction \end{array} \xrightarrow{Y} \begin{array}{c} Clustering \\ Q = \{Q_c, \mathbf{q}_c \mid c = 1, ..., C\} \\ Q_c : c^{\text{th}} Cluster \\ \mathbf{q}_c : c^{\text{th}} Cluster \\ \mathbf{q}_c : c^{\text{th}} Cluster \\ \mathbf{q}_c : c^{\text{th}} Cluster \\ Q_c : C^{\text{th}} Cluster \\ \mathbf{q}_c : c^{\text{th$$

- Features → B-spline coefficients [Unser et al., 1993]
  - emphasize functional nature of data
- Agglomerative clustering
  - Distance metric  $d[\mathbf{y}(i), \mathbf{y}(j)] = 1 \frac{\langle \mathbf{y}(i), \mathbf{y}(j) \rangle}{\|\mathbf{y}(i)\| \|\mathbf{y}(j)\|}$
  - Average-linkage criterion

Saturday, November 24, 2007

#### Clustering Settings

| Parameter                         | Value (or range)                                 |  |  |
|-----------------------------------|--------------------------------------------------|--|--|
| Dimensionality of input vectors m | 41                                               |  |  |
| Reduced dimension <i>n</i>        | 5                                                |  |  |
| Number of clusters $C$            | 5                                                |  |  |
| Distance metric                   | One-minus-the-normalized correlation coefficient |  |  |
| Closeness criterion               | Average linkage                                  |  |  |
| Range for delay T                 | (0,3) seconds or $(0,5)$ samples                 |  |  |
| Range for time constant $	au$     | (1,4)                                            |  |  |

Clustering Results: (H1)-type datasets subject-by-subject



Saturday, November 24, 2007

Clustering Results: (H1)-type datasets quadruple-by-quadruple



Saturday, November 24, 2007

Clustering Results: (H2)-type and (H3)-type datasets



## In summary;

- Both approach yield CArWs that are similar to BHR modeled as the Gamma function
- ICA is more consistent in the results it produces
- Both inter-subject and inter-detector variations exist

# Outline

- ✓ Introduction
- Statistical Characterization of fNIRS Data
- Time-Frequency Characterization
- Functional Activity Estimation
- Conclusion

- fNIRS as a Random Process
- Relevant Spectral Bands
- CArW Extraction
- Future Prospects
- Remarks on Experimental Protocols and Measurements

## fNIRS as a Random Process

- Stationarity
  - Long-term non-stationarity is most probably due to the baseline
  - Short-time processing is plausible
    - 30 to 50 samples
    - ITI in the cognitive protocol was random in (30, 50) samples

## fNIRS as a Random Process

- Gaussianity
  - The fNIRS process is non-Gaussian
    - The linear minimum mean-squared error (MSE) estimators will not be globally optimal, in extracting CArW.
    - The use of ICA is plausible in CArW extraction.
  - The underlying distribution is symmetric with heavy tails.

- Relevant Spectral Bands
  - The short-time spectrum is not very helpful in localizing temporal events
  - The Canonical Bands
    - A-Band: (0-30 mHz) baseline, independent of taskrelated activity
    - *B*-Band: (30-40 mHz) fundamental frequency of cognitive activity (the centered Gamma waveform)
    - *C*-Band: (40-250 mHz) protocol-induced periodicity information, respiratory signal, vasomotion
    - *D*-Band: (250-mHz) respiratory signal, random fluctuations, aliased part of the heartbeat signal

### CArW Extraction

- Inter-subject and inter-quadruple-of-detectors variations exist.
- In terms of the conformance to Gamma function model, waveforms estimated by ICA are more plausible to be cognitive-activity related than those estimated by clustering.
- ICA decomposition yields not only the CArW, but also others that can potentially be used to model the baseline interference.
- The BHR can be more flexibly parametrized as compared to Gamma model which relegates all the characteristics to a single parameter. Instead, B-spline coefficients represent the global waveform while preserving locality property.

#### Future Prospects

- Process Characterization
  - Distribution of fNIRS Data
    - Density estimation
  - Alternative time-frequency features [Blanco et al., 1995]
    - Mean weight frequency profile
    - Main peak frequency profile
    - Monofrequency deviation profile
  - Alternative subband partitioning scheme [Blanco et al., 1998]
    - Wavelet Packet Analysis

#### Future Prospects

- Alternative CArW Extraction Methods
  - ICA of B-spline coefficients
    - ICA  $\rightarrow$  independence assumption seem to be reasonable
    - B-splines  $\rightarrow$  summarize the data very efficiently
  - Fuzzy clustering of B-spline coefficients
    - Crisp clustering may lead to misinterpretation of data
  - Self-Organizing Map
    - Would allow a natural visualization of CArW variations

#### Future Prospects

- Alternative CArW Extraction Methods
  - Bayesian Modeling [Ciuciu et al., 2002]

$$\mathbf{y}_k = \mathbf{h} + \mathbf{C}\mathbf{d}_k + \mathbf{v}_k$$

 $\mathbf{y}_{k} = \begin{bmatrix} y_{t_{k}}, y_{t_{k}+1}, \cdots, y_{t_{k}+m-1} \end{bmatrix}^{T} : \text{Observed sequence after } k^{\text{th}} \text{ target}$   $\mathbf{h} = \begin{bmatrix} h_{0}, h_{1}, \cdots, h_{m-1} \end{bmatrix}^{T} : \text{Unknown time-invariant BHR waveform}$   $\mathbf{C} = \begin{bmatrix} \mathbf{c}_{1}, \cdots, \mathbf{c}_{Q} \end{bmatrix} : \text{A set of orthonormal basis functions}$   $\mathbf{d}_{k} = \begin{bmatrix} d_{1,k}, d_{2,k}, \cdots, d_{Q,k} \end{bmatrix}^{T} : \text{Vector of unknown weights}$   $\mathbf{v}_{k} = \begin{bmatrix} v_{t_{k}}, v_{t_{k}+1}, \cdots, v_{t_{k}+m-1} \end{bmatrix}^{T} : \text{Noise, unwanted random physiological fluctuations}$ Saturday, November
Analysis of fNIRS Signals

#### Future Prospects

- Alternative CArW Extraction Methods
  - Dynamic Bayesian Modeling

$$\mathbf{h}_{k+1} = \mathbf{\Gamma}(k+1,k)\mathbf{h}_k + \mathbf{w}_k$$
$$\mathbf{y}_k = \mathbf{h}_k + \mathbf{C}\mathbf{d}_k + \mathbf{v}_k$$

 $\Gamma(k+1,k)$ : State - transition matrix  $\mathbf{w}_k$ : Process noise

Saturday, November 24, 2007

#### Future Prospects

Alternative CArW Extraction Methods

• Non-linear neurovascular Coupling Models

 $\mathbf{y}_k = f(\mathbf{X})\mathbf{h} + \mathbf{C}\mathbf{d}_k + \mathbf{v}_k$ 

**X** : Binary stimulus onsets matrix  $f(\cdot)$  : Non - linear function to model neural pathways

Saturday, November 24, 2007

- Remarks on Experimental Protocols and Measurements
  - Simultaneous fNIRS and fMRI recordings
    - Combine advantages of both approaches
  - Stimulus Design for fNIRS [Liu et al., 2001]
    - Block Designs
      - Good detection power, minimum estimation efficiency
    - Randomized Designs
      - Poor detection power, maximum estimation efficiency
    - ⇒Randomized designs are more suitable for fNIRS

# Outline

- ✓ Introduction
- Statistical Characterization of fNIRS Data
- Time-Frequency Characterization
- Functional Activity Estimation
- ✓ Conclusion