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Introduction

Functional Neuroimaging
– PET, fMRI

• Non-invasive
• Measure correlates of neuronal activity
• High spatial, but low temporal resolution
• Expensive
• Uncomfortable for patients or volunteers
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Introduction

Functional Neuroimaging
– fNIRS

• Non-invasive
• Measure correlates of neuronal activity
• Low spatial, but potentially high temporal 

resolution
• Inexpensive
• Less distressing for patients or volunteers
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Introduction
The fNIRS Principle
– NIR light (650-950 nm) can pass through the skull and reach 

the cerebral cortex up to a depth of 3 cm
– NIR light absorption spectra of HbR and HbO2 are distinct
– Using the modified Beer-Lambert law, it’s possible to 

quantifiy the changes in the concentrations of these 
hemoglobin agents
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Introduction

Motivation behind fNIRS Study
– Both fMRI and fNIRS measure a correlate of 

oxygen availability in a particular brain region
– HbR ↓, then BOLD signal of fMRI ↑

[Boynton et al., 1996]
– Simultaneous BOLD and fNIRS recordings do 

exhibit strong correlations
[Strangman et al., 2002]

BOLD: Blood Oxygen Level Dependent
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Introduction

Motivation behind fNIRS Study
– Two problems of fMRI

• Activity Detection functional activity maps
• Brain Hemodynamic Response (BHR) Function 

Estimation

[Boynton et al., 1996]
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Introduction

Motivation behind fNIRS Study
– From the perspective of fNIRS

• Activity detection is not an issue unless more spatial 
resolution is provided

• BHR function may be estimated more accurately thanks 
to high temporal resolution

• fNIRS can be more efficiently used in characterizing the 
baseline physiology

– HbO2, HbR, blood volume, oxygenation
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Statistical Characterization

How are data acquired?

Does the signal result from a stationary 
process?

Is the signal process Gaussian?
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Statistical Characterization

The fNIRS Device
– Light sources and photodetectors
– Measurements at 730 nm, 805 nm, 850 nm
– Modified Beer-Lambert Law
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Statistical Characterization
Target Categorization task
– Context stimuli OOOOO

• Avoids habituation effects
• Comes every 1.5 secs

– Target stimuli XXXXX
• Expected to trigger functional activity BHR
• 8 sessions, 8 trials per session 64 instances per experiment
• In a given session, random onsets every 18-29 secs
• The target arrival pattern is the same for every session

– Both types last 0.5 sec impulsive stimulus
Sampling rate Fs=1.7 Hz
An experiment lasts ~25 minutes
16×3 optical density signals per experiment, 5 
subjects
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Statistical Characterization
Preprocessing of fNIRS Data
– Elimination of corrupted data 
– Applying MBLL to the raw measurements at 730 nm and 850 

nm
• HbR

HbO2
• 72 Hb-component signals remain

– Trend removal by moving average filtering



Saturday, November 
24, 2007

Analysis of fNIRS Signals 15

Statistical Characterization

How are data acquired?

Does the signal result from a stationary
process?

Is the signal process Gaussian?
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Statistical Characterization

Stationarity of fNIRS-HbO2 Signals
– Strict-sense vs. Wide-sense
– Graphical investigation

• Profiles of short-time estimates of statistics up 
to 4th order

– Mean
– Variance
– Skewness
– Kurtosis 

– Run tests
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Statistical Characterization
Graphical Investigation of Stationarity
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Statistical Characterization

Run tests at significance level α = 0.01
– 50 frames of length 2N per signal

• 3600 cases to test

– HbO2 signals, definitely, are non-stationary unless short 
observation window is chosen
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Statistical Characterization

How are data acquired?

Does the signal result from a stationary
process?

The signals are globally non-stationary
Short-time processing is plausible (30-50 samples)

Is the signal process Gaussian?
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Statistical Characterization

Graphical Investigation of Gaussianity (normality)
– Normal probability plot

Hypothesis Testing

– Kolmogorov-Smirnov (K-S) Test
– Jarque-Bera (J-B) Test

– Hinich’s test designed for time-series data

Hypothesisy Gaussianit:0H

require i.i.d. data
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Statistical Characterization

Graphical Investigation of Normality

Another collection of randomly 
selected HbO2 samples

A collection of randomly selected 
HbO2 samples
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Statistical Characterization

K-S Test Results
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Statistical Characterization

J-B Test Results

– J-B test has a more pronounced tendency to reject 
Gaussianity
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Statistical Characterization

Hinich Test Results
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Statistical Characterization

How are data acquired?

Does the signal result from a stationary
process?

The fNIRS-HbO2 signals are globally non-stationary
Short-time processing is plausible (30-50 samples)

Is the signal process Gaussian?
The fNIRS-HbO2 process is non-Gaussian
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Time-Frequency Characterization

The Typical fNIRS-HbO2 Spectrum

Selection of Relevant Frequency Bands

Does fNIRS measure cognitive activity? 
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Time-Frequency Characterization

The Typical fNIRS-HbO2 Spectrum
– 3D Normalized Intensity Graph
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Time-Frequency Characterization

The Typical fNIRS-HbO2 Spectrum
– Intensity Level Diagram
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Time-Frequency Characterization

The Typical fNIRS-HbO2 Spectrum
The spectrum is essentially low-pass (<100 mHz)
In the range of 700-850 mHz, there is a slight increase in the 
time-frequency plane 

Selection of Relevant Frequency Bands

Does fNIRS measure cognitive activity? 
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Time-Frequency Characterization

Selection of Relevant Frequency Bands
– Parsing the signal spectrum into dissimilar 

subbands
– Relative power profile per band 
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Time-Frequency Characterization

Selection of Relevant Frequency Bands
– Dissimilarity is measured by

– We evaluate Rn(t) in
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Time-Frequency Characterization

Selection of Relevant Frequency Bands
– Agglomerative clustering: For a given signal

i. Assign each Rn(t) to its own cluster 
ii. Compute all pairwise distances between each cluster
iii. Merge the two clusters until only one cluster remains,         

i.e., return to ii.
– Single linkage criterion   

– The end product is a dendrogram
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Time-Frequency Characterization

Selection of Relevant Frequency Bands

Dendrogram:

We prune it! C = 3



Saturday, November 
24, 2007

Analysis of fNIRS Signals 35

Time-Frequency Characterization

Selection of Relevant Frequency Bands
– We have 72 signals 72 different partitionings
– Each partitioning consists of 3 subbands 72×3 candidates

We count the number of occurences for each subband
– We identify possible partitionings where

• The bands are non-overlapping
• The bands collectively cover the whole spectrum
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Time-Frequency Characterization

The Canonical Bands of fNIRS Signals

Baseline
Cognitive 
activity

Cognitive activity          
Respiratory signal 

Vasomotion

Random fluctuations 
Cardiac pulses
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Time-Frequency Characterization

The Typical fNIRS-HbO2 Spectrum
The spectrum is essentially low-pass (<100 mHz)
In the range of 700-850 mHz, there is a slight increase in the 
time-frequency plane 

Selection of Relevant Frequency Bands
A-Band: 0-30 mHz, B-Band: 30-40 mHz,
C-Band: 40-250 mHz, D-Band: 250-850 mHz

Does fNIRS measure cognitive activity?
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Time-Frequency Characterization

Evidence of cognitive activity
– Cognitive stimuli are quasi-periodic

• Inter-Target Interval (ITI): uniform in (30,50) samples

– We expect to find evidences of such periodicity in 
the HbO2 signals by LSPE

– Bands B and C are more likely to reflect this 
information

• We prefilter the signals in the BC-Band, i.e., 30-250 mHz
• Prefiltering helps also to mitigate non-stationarity

LSPE: Least-Squares Periodicity Estimation
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Time-Frequency Characterization

Evidence of cognitive activity
– Treatment of real data

• session-by-session
– Another way to mitigate non-stationarity

• in the (20, 60) samples range
• Local maxima selection, (-3, 3) samples range
• A small threshold at 0.1
• For each session, we let the algorithm return the period 

with largest confidence
– 8 candidate periods per signal
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Time-Frequency Characterization

Sin and Sout profiles for Subject 4
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Time-Frequency Characterization

Evidence of cognitive activity

Responsive subjects/photodetectors
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Time-Frequency Characterization

Evidence of cognitive activity
– Inside periodicities averaged over all subjects for a given

photodetector

)(kPsubjects

Photodetector index
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Time-Frequency Characterization

Evidence of cognitive activity
– Inside periodicities averaged over all photodetectors for a 

given subject

Subject index

)(d jP etectors
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Time-Frequency Characterization

The Typical fNIRS-HbO2 Spectrum
The spectrum is essentially low-pass (<100 mHz)
In the range of 700-850 mHz, there is a slight increase in the 
time-frequency plane 

Selection of Relevant Frequency Bands
A-Band: 0-30 mHz, B-Band: 30-40 mHz,
C-Band: 40-250 mHz, D-Band: 250-850 mHz

Does fNIRS measure cognitive activity?
For some subjects/detectors, we encountered to the 
evidence of protocol-induced periodicity
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Outline

Introduction
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Time-Frequency Characterization
Functional Activity Estimation
Conclusion
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Functional Activity Estimation

The problem
– We try to estimate cognitive-activity related 

waveforms (CArW)
– CArW are the counterparts of BHR
– We use fNIRS vectors that consist of m signal 

samples just after the target onsets
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Functional Activity Estimation

We consider two approaches
– Independent Component Analysis (ICA)
– Clustering of cubic B-spline coefficients 

We consider different types of datasets

We rank the estimated vectors based on their 
similarity to the Gamma waveform model 
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Functional Activity Estimation

Ranking the estimated vectors
– The Gamma Function Model 
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Functional Activity Estimation

ICA Approach
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Functional Activity Estimation

ICA Settings
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Functional Activity Estimation

ICA Results: (H1)-type datasets subject-by-subject
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Functional Activity Estimation

ICA Results: (H1)-type datasets quadruple-by- quadruple
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Functional Activity Estimation

ICA Results: (H2)-type and (H3)-type datasets



Saturday, November 
24, 2007

Analysis of fNIRS Signals 54

Functional Activity Estimation

Clustering Approach

– Features B-spline coefficients [Unser et al., 1993]
• emphasize functional nature of data

– Agglomerative clustering
• Distance metric

• Average-linkage criterion
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Functional Activity Estimation

Clustering Settings
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Functional Activity Estimation

Clustering Results: (H1)-type datasets subject-by-subject
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Functional Activity Estimation

Clustering Results: (H1)-type datasets quadruple-by-quadruple
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Functional Activity Estimation

Clustering Results: (H2)-type and (H3)-type datasets
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Functional Activity Estimation

In summary;
– Both approach yield CArWs that are similar to 

BHR modeled as the Gamma function
– ICA is more consistent in the results it produces
– Both inter-subject and inter-detector variations 

exist
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Conclusion

fNIRS as a Random Process
Relevant Spectral Bands
CArW Extraction
Future Prospects
Remarks on Experimental Protocols and 
Measurements
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Conclusion

fNIRS as a Random Process
– Stationarity

• Long-term non-stationarity is most probably due to the 
baseline

• Short-time processing is plausible
– 30 to 50 samples
– ITI in the cognitive protocol was random in (30, 50) 

samples
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Conclusion

fNIRS as a Random Process
– Gaussianity

• The fNIRS process is non-Gaussian
– The linear minimum mean-squared error (MSE) estimators 

will not be globally optimal, in extracting CArW. 
– The use of ICA is plausible in CArW extraction.

• The underlying distribution is symmetric with heavy tails.
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Conclusion

Relevant Spectral Bands
– The short-time spectrum is not very helpful in 

localizing temporal events
– The Canonical Bands

• A-Band: (0-30 mHz) baseline, independent of task-
related activity

• B-Band: (30-40 mHz) fundamental frequency of cognitive 
activity (the centered Gamma waveform)

• C-Band: (40-250 mHz) protocol-induced periodicity 
information, respiratory signal, vasomotion

• D-Band: (250-mHz) respiratory signal, random 
fluctuations, aliased part of the heartbeat signal
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Conclusion

CArW Extraction
– Inter-subject and inter-quadruple-of-detectors variations 

exist.
– In terms of the conformance to Gamma function model, 

waveforms estimated by ICA are more plausible to be 
cognitive-activity related than those estimated by clustering.

– ICA decomposition yields not only the CArW, but also others 
that can potentially be used to model the baseline 
interference.

– The BHR can be more flexibly parametrized as compared to 
Gamma model which relegates all the characteristics to a 
single parameter. Instead, B-spline coefficients represent the 
global waveform while preserving locality property.
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Conclusion

Future Prospects
– Process Characterization

• Distribution of fNIRS Data
– Density estimation

• Alternative time-frequency features [Blanco et al., 1995]
– Mean weight frequency profile
– Main peak frequency profile
– Monofrequency deviation profile

• Alternative subband partitioning scheme                         
[Blanco et al., 1998]

– Wavelet Packet Analysis



Saturday, November 
24, 2007

Analysis of fNIRS Signals 67

Conclusion

Future Prospects
– Alternative CArW Extraction Methods

• ICA of B-spline coefficients
– ICA independence assumption seem to be reasonable
– B-splines summarize the data very efficiently

• Fuzzy clustering of B-spline coefficients
– Crisp clustering may lead to misinterpretation of data 

• Self-Organizing Map
– Would allow a natural visualization of CArW variations
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Conclusion

Future Prospects
– Alternative CArW Extraction Methods

• Bayesian Modeling [Ciuciu et al., 2002]
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Conclusion

Future Prospects
– Alternative CArW Extraction Methods

• Dynamic Bayesian Modeling
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Conclusion

Future Prospects
– Alternative CArW Extraction Methods

• Non-linear neurovascular Coupling Models
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Conclusion

Remarks on Experimental Protocols and 
Measurements
– Simultaneous fNIRS and fMRI recordings

• Combine advantages of both approaches

– Stimulus Design for fNIRS [Liu et al., 2001]
• Block Designs

– Good detection power, minimum estimation efficiency
• Randomized Designs

– Poor detection power, maximum estimation efficiency
Randomized designs are more suitable for fNIRS
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