
 1

  
Abstract—In this paper, we propose an extension of watershed 

segmentation to color images. PDE-based regularization is 

considered prior to the extraction of watershed contours in order 

to avoid the inherent oversegmentation problem. Several PDEs 

are implemented and tested in terms of their efficiency as a 

preprocessing block of watershed segmentation. We have also 

implemented Vincent and Soille’s fast watersheds algorithm in 

concatenation with region merging to get a true segmentation of 

color images. The results prove to be satisfactory.           

 
Index Terms—Color image segmentation, PDE-based 

regularization, Watershed transformation, Region merging. 

 

I. INTRODUCTION 

Image segmentation is a fundamental preprocessing step in 

image analysis and classification. Applications vary from 

medical image analysis to content-based image retrieval 

systems. The task is basically to discriminate the regions in an 

image in such a way that each region is homogeneous in itself 

and distinct from the remainder. Many techniques are present 

in the literature, they are more or less successful in their 

specific domain but no one has a perfect generalization ability 

[4]. In this work, we present the implementation of a 

watershed segmentation of color images with region merging. 

Prior to watershed segmentation, PDE based regularization of 

the image is performed as preprocessing.  

Watershed algorithm is a morphological technique for gray-

scale images that yields an edge map without disconnected 

edges in contrast to gradient-based edge detectors like Sobel 

operator, or in Canny to some extent[1]. Once such an edge 

map is found, a region merging scheme can be applied to 

obtain a true segmentation of the image. The problem 

associated with watersheds is the one of oversegmentation. 

Due to insubstantial minima in the squared gradient-map of the 

image landscape, many irrelevant regions arise as the outcome 

of segmentation. Weickert proposed a method to fix this 

inconvenience by PDE-based regularization of gray scale 

images[1]. He uses an effective implementation of Catté’s 

nonlinear diffusion filter by Additive Operator  Splitting(AOS) 

[2] so that the possibly noisy image exhibits flat regions inside 
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the edges, while the latter are preserved. Such a regularized 

image would constitute a better input to watershed technique 

with region merging.  

In this work, it is aimed to perform an efficient and fast 

segmentation task for vector valued images. For this purpose, 

different approaches using PDE-based regularization and 

watershed segmentation have been proposed in the literature 

for both for scalar and vector valued inputs[1]. Basically two 

of them are investigated and adopted in this paper: Partial 

Differential Equations and Watershed algorithms as they are 

reviewed in [3] and [1], respectively. 

Concentrating ourselves on these two methods, a 

compromise of both is preferred followed by a region merging 

procedure, despite the fact that any one of them can be 

implemented seperately to perform the whole segmentation 

task alone. PDE method which uses diffusion filters is suitable 

for image denoising and coherence enhancement, but in the 

case of total segmentation it is not the best choice if low 

computational load and high convergence rate is desired. On 

the other hand, watershed algorithm which works relatively 

faster, suffers from the limitation that many irrelevant minima 

cause an oversegmentation. So, as Weickert proposes in [1] an 

efficient combination of both is aimed where they are used in 

succesive parts of the whole process, compensating each 

other’s shortcomings: First a PDE based regularization is 

implemented to obtain regular regions of segment candidates 

suitable for the next step where watersheds and region merging 

are applied to obtain the final result without the risk of 

oversegmentation. Here, the procedure offered by Weickert is 

for scalar images; as an innovation, we extend it to vector 

valued ones. However that would  require the definition of an 

edge geometry common to each channel allowing us to apply a 

common vector PDE, since using separate scalar PDEs on 

each component would be useless resulting in different 

diffusion patterns and falsely smoothed edges when 

blended[3]. 

The paper is organized as follows: in Section II, we present 

the theory and practical considerations concerning PDE-based 

regularization of color images. In Section III, we review 

Vincent et al.’s approach to watershed segmentation based on  

immersion simulations[5]. We also give an algorithmic 

formulation of the procedure. This section concludes with the 

discussion of two different region-merging schemes that may 

follow  watershed segmentation. In section IV, we provide the 

results of the proposed approach applied on both synthetic and 

real-life color images.          

Color image segmentation using PDE-based 

regularization and watersheds 
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II. PDE-BASED REGULARIZATION 

A. Background  

Restoration and regularization of noisy and blurred data have 

always been a particular area of image processing and many 

algorithms have been proposed to solve this problem.  For this 

purpose, diffusion filters based on partial differential equations 

are quite remarkable in terms of their efficiencies to regularize 

images while preserving discontinuities of edges, which is 

however not the case in linear filtering schemes. The first work 

initiating the wide study on diffusion filters was the anisotropic 

diffusion PDE algorithm proposed by Perona and Malik, 

which was aimed to smooth grayvalued images while 

preserving edges. Then, the unification of many different 

anisotropic regularization PDEs acting on scalar images, was 

possible with the formulation of the Ф-function within a 

common variational framework: Consider a spatial 2D-domain 

denoted by Ω with Neumann boundary conditions on ∂Ω. 

Then a noisy scalar image I0 can be regularized by minimizing 

the following Ф-functional: 
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Here the fixed parameter α > 0 prevents the solution to be too 

different from the original image I0, with ℜ→ℜΦ :  being 

an increasing function and controlling the regularizaiton 

behavior. The minimization of E(I) is then performed by the 

following PDE evolution: 
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With this common framework, many scalar regularization 

schemes proposed in the current literature, can be expressed by 

finding the corresponding Ф-function. Basically, such a 

regularization PDE should adapt its diffusion behavior to the 

local geometry of the image, defined by the edge indicators 

and edge orientations. Including these, (2) becomes: 
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where HηηTI =ηη  and HξξTI =ξξ  are the second spatial 

derivatives of I in the directions of the gradient 

II ∇∇= /η  and its orthogonal 
⊥= ηξ , with H denoting 

the hessian of I. According to these definitions, on an image 

discontinuity, namely on an edge, we have a diffusion along η  

(normal to the edge) weighted with: 
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and a diffusion along ξ  (tangential to the edge) weighted with: 
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Here different choices on Ф lead to different diffusion 

patterns, with the following constraints on ηc  and ξc : 

1) ηc  and ξc  must be positive to avoid inverse diffusion 

along η  and ξ . 

2) When the local geometry is flat with no edges 

( 0→∇I ), the diffusion should be isotropic, with no 

preferred diffusion directions since η  and ξ  do not 

represent significant orientations in this case: 

0>=≅ βξη cc   then         IIItI ∇=+=∂∂ ββ ηηξξ )(/  

3) On high gradient regions ( 0>>∇I ), where the current 

point may be located on an edge, the diffusion should be done  
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Fig. 1. Block diagram of the proposed approach. 
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only along the tangential edge direction ξ , to preserve it: 

ηξ cc >>  and 0≅ηc  then ξξξ IctI =∂∂ / . 

 

As an example the hypersurface function defined in [10]: 

 

             212)( 2 −+=Φ ss            (6) 

 

satisfies these properties and is used in some of the 

implementations performed in this paper and ξc  and ηc look 

like as shown in Fig. 2. 

B. Vector Local Geometry 

As mentioned above, a regularization process should adapt 

its diffusion behavior to the local geometry of the image, 

defined by the edge indicators and edge orientations. For the 

scalar case, such attributes are given by I∇  and by the 

orientation basis ( η ,ξ ), respectively. Extending this approach 

to vector valued images I, we have to define equivalent 

geometric attributes, taking the coupling between vector 

channels Ii into consideration. Applying separate scalar PDEs 

to each of these components would not be a remedy, since 

each channel would diffuse with different local geometries 

iI∇  and ( iη , iξ ), leading to a blended image with falsely 

smoothed edges. 

For a vector valued image I, the local geometry with 

gadient norm N and direction +θ , should be “as common as 

possible” to all channels. One approach would be to reduce the 

dimensionality of the vector image to a scalar one by 

evaluating the luminance. If ∑
=

=
M

i

iIf
1

2)(I denotes the 

luminance function of a given M-channel image I, gradient 

norm and direction will be )(IfN ∇=  and 

)(/)( IIθ ff ∇∇=+ . However, the luminance function 

would not be able to detect iso-luminance contours.  

A possible remedy, proposed by Di Zenzo in [1] considers 

a multivalued image I as a 2D→MD (M = 3 for color images) 

vector field and looks for the local variations of the norm 

||dI||
2
, mainly given by the variation matrix G. If we denote by 

X=(x,y)
T
, we get XGXI ddd T=

2
, where 

G
T
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M

i

i II ∇∇=∑
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 with iI∇  denoting the gradient in the i
th
 

image channel. 

For color images I = (R,G,B) the symmetric and 

semipositive matrix G is then: 
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The positive eigenvalues −+ /λ of  G are the maximum and the 

minimum of ||dI||
2
 and the orthogonal eigenvectors +θ  and 

−θ  are the corresponding variation orientations: 
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where 
2

12

2

2211 4)( ggg +−=∆ . Considering this Di Zenzo 

metric an appropriate choice for the vector image-gradient, the 

gradient norm will be: 
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Here, Di Zenzo’s approach considers the gradient as a random 

vector with its realizations in each channel and computes its 

covariance matrix G. Then, the larger eigenvalue +λ  of G will 

correspond to its eigenvector with maximum variation, +θ , 

which is assumed to be vector-image gradient, common to 

each channel. With the same reasoning, the second eigenvector 

−θ  will be taken orthogonal to this gradient direction. 

Fig. 2. The decreasing positive functions ξc and ηc . 
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An alternative and simpler definition for vector-gradient 

direction would be: 
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where it is found simply by vector addition of channel 

gradients. Along with Di Zenzo’s, this metric is also used in 

this paper. Both choices detect vector valued edges and 

corners in a good way, and they are easy to compute. For a 

given edge region where each channel exhibits slightly 

different gradient direction the overall gradient directions 

according to both metric will be as illustrated in Fig. 3. 

C. Vector PDE 

Along with the ones rewieved in [3], we implemented 

various diffusion filters, comparing their results in Section IV. 

In all of them, N and +θ (with 
⊥
+− = θθ ) denote the vector-

image gradient norm and direction, respectively, found by the 

vector local geometries defined above. In the first two of the 

following the diffusion equation is of the form: 
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with g(N) some diffusivity function which is decreasing in N. 

The subsequent three constitute tensor diffusion PDEs of the 

general form: 

 

                     )( i
i Idiv
t

I
∇=

∂

∂
D           (13) 

 

with a specific symmetric and diagonalizable diffusion tensor 

D, where its eigenvalues are the diffusion weights along 

corresponding eigenvectors. Note that in both of them g(N) 

and D contain local geometry information common to all 

channels, whereas gradient iI∇  and time derivative tI i ∂∂ /  

are specific to channel i. The reflecting boundary conditions 

are also satisfied by constraining 0/ =Ω∂∂ in I  where n 

denotes the normal to the image boundary Ω∂ , i.e. diffusion 

normal to the image boundary is forbidden.    

1) PDE of Catté et al.: The nonlinear diffusion filter of 

Catté et al. with the structure given in (10), uses σN  instead 

of N, where σN is the gradient norm defined by (8), obtained 

from a Gaussian smoothed version of I. The diffusivity 

function, g is defined by: 
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For such rapidly decreasing diffusivities, smoothing on both 

sides of an edge is much stronger than smoothing across it. 

This selective smoothing process prefers intraregional 

smoothing to interregional blurring. The factor 3.315 ensures 

that the flux )()( ssgs =Φ  is increasing for µ≤s  and 

decreasing for µ>s . Thus, µ  is a contrast parameter 

seperating low contrast regions with forward diffusion from 

high contrast locations where backward diffusion may enhance 

edges. 

2) PDE of Perona and Malik: The anisotropic PDE of 

Perona and Malik defined by (10) employs the diffusivity: 
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which has the same effect on edges as in Catté’s PDE, where k 

is again some contrast parameter. 

3) Edge enhancing diffusion: This tensor diffusion PDE as 

defined in (11), uses the following diffusion tensor: 
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with eigenvalues )(1 σλ Ng=  and 12 =λ , and 

corresponding eigenvectors σIθu ∇= + //  and 

−
⊥ == θuv . For diffusivity g, the function defined in (13) 

is taken. As in the case of Catté, σN is the gradient norm of 

the smoothed version of I, found by (8). With this tensor, on 

high gradient regions where 0>>σN , we 

have 1)( <<σNg , resulting in a very small diffusion along u 

(normal to the edge), and a diffusion with weight 1 along v 

(tangential to the edge), thus enhancing the edges. On flat 

regions where 0→σN , we have 1)( →σNg , resulting in 

an isotropic diffusion, equally weighted by 1 along u and v. 

4) Coherence enhancing diffusion: This tensor diffusion 

PDE as defined in (11), uses the following diffusion tensor: 

Fig 3. Vector-image gradient directions and gradient 

orthogonals found with  Di Zenzo metric(left) and simple 

vector addition method (right; red, green and blue arrows 

represent the corresponding channel gradients)  
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with eigenvalues βλ =1  and ))/(exp()1( 2

2 −+ −−−+= λλββλ C , 

and corresponding eigen-vectors += θu  and −
⊥ == θuv  

as in the previous case. +λ  and −λ  are the eigenvalues of Di 

Zenzo matrix G, defined in (6). According to this, on high 

gradient regions where −+ >> λλ , we have 

1))/(exp( 2 →−− −+ λλC , and hence 

1))/(exp()1( 2 →−−−+ −+ λλββ C . Thus, in those 

regions we have small diffusion weghted by 10 << β  along 

u (normal to the edge), and a diffusion with weight 1 along v 

(tangential to the edge). On flat regions where −+ ≅ λλ , we 

have 0))/(exp( 2 →−− −+ λλC , and hence 

βλλββ →−−−+ −+ ))/(exp()1( 2C , resulting in an 

isotropic diffusion, equally weighted by β  along u and v.  

Taking β  small, provides small diffusion orthogonal to the 

edges but also suppresses the isotropic smoothing behavior in 

flat regions. 

5) Beltrami flow: With a different approach Sochen and 

Kimmel found a particular case of the coherence enhancing 

diffusion PDE, denoted by Beltrami flow. The tensor of this 

PDE has the following form: 
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with eigenvalues )1/()1(1 +− ++= λλλ  and 

)1/()1(2 −+ ++= λλλ , and corresponding eigenvectors 

+= θu  and −
⊥ == θuv . G is Di Zenzo matrix found by 

(5) with its eigenvalues +λ  and −λ ,and Id is a 2×2 identity 

matrix. In order to keep the diffusion small in regions with 

dense structure, the diffusion equation of (11) is weighted with 

an extra term 
2/1))(det( −+GId  resulting in: 
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Here, on high gradient regions where −+ >> λλ , we have 

01 ≅λ , hence the diffusion is mainly done along v 

(tangential to the edge). On flat regions where −+ ≅ λλ , we 

have 121 ≅≅ λλ , resulting in isotropic diffusion. 

6) Deriche’s PDE: The diffusion PDE proposed by 

Tschumperlé and Deriche in [3], has the general form of (3): 
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where 
+θ
c  and 

−θ
c  are decreasing functions of their 

arguments defined by (4), (5) and (6) and plotted in Fig. 3. 

This equation has the property to adapt its smoothing behavior 

to the local geometry of the image and it performs a coherence 

restoration process. 

III. WATERSHED SEGMENTATION WITH REGION MERGING  

A. Background 

In watershed segmentation, the gradient image is viewed as 

a topographic relief that posses peaks and valleys. Fig. 4 is an 

illustration of a simple grayscale map as a topographical 

surface. From this perspective, a watershed algorithm can be 

described in view of simulating flooding water that fills up the 

valleys or merge in vaste plateaus.   Two well known rigorous 

approaches to watershed segmentation are based on: 

 

1) Rain-falling simulation 

2)  Immersion simulation 

 

In this work,  we adopted the immersion simulation 

approach which originates from Vincent and Soille’s work[5]. 

The concept of immersion simulation can be described as 

follows. Holes are pierced at the minima of the surface and the 

whole surface is slowly immersed in water. The water rises in 

through these holes and gets collected in the catchment basins. 

When the water from one basin starts to merge into an adjacent 

one, a dam is built to prevent this overflow. The dams or 

watershed lines separate the catchment basins from one 

another and correspond to the boundaries in the  image. The 

power of watershed segmentation resides in that it always 

produces closed contours. The watershed lines when properly 

located enclose different regions which stand for a true 

segmentation of the original image. In most of the cases, there 

are too many subtle regions that should be merged by 

following some application specific criteria. The PDE-based 

regularization is expected to reduce the number of regions 

Fig. 4. A grayscale map and its topographical 3D representation. 
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after watershed segmentation, i.e prevent oversegmentation. 

Furthermore, it has been pointed out that even if a 

regularization is performed prior to gradient computation, the 

number of regions resulting from watershed segmentation is 

far from being acceptable[5]. Accordingly, a region merging 

procedure is more than necessary. 

B. Vincent and Soille’s Fast Watershed Algorithm 

Vincent and Soille viewed the problem as a region-growing 

problem by starting with a possibly disconnected region of the 

minimum gray level, then growing this region with some 

morphological operations. The watershed lines happen 

afterwards to be the complement of the final region which is 

indeed the set of catchment basins. The process for finding this 

final region is summarized next. 

Let hmin, … , hmax be the discrete gray-levels present in a 

gradient image I. 
maxhX is the aformentioned final region and 

can be obtained recursively by 

 

(i) )(
minmin
ITX hh =  =  {Pixels with gray-levels less than or 

equal to hmin} 

(ii)  Xh+1 = {Pixels that belong to a regional minimum at level 

h+1} ∪  {The geodesic influence zone of Xh inside 

Th+1(I)} 

(iii) Continue until the maximum discrete gray-level hmax is 

reached 

 

A regional minimum is a connected plateau of pixels with a 

unique value from which it is impossible to reach a pixel of 

lower value without having to climb. On the other hand, the 

geodesic influnce zone is best explained by an illustrative 

figure as in Fig. 5 where there is a disconnected set B of three 

connected components such that B={Bi , i=1,2,3} inside a 

point set A. Accordingly, the geodesic influence zone of Bi in 

A is the set of points in A that are closer to Bi than to Bj with j 

different than i. The closeness is measured with respect to 

geodesic distance defined as the length of the shorthest path, 

that is totally included in A, between a pixel outside a 

connected component Bi and the latter. The geodesic influence 

zone of B in A, in its turn, happens to be the union of the 

geodesic influnce zones of each of the connected components 

Bi. The boundaries between the shaded regions of Fig. 5 thus 

constitute the set of points that do not belong to any of the 

geodesic influence zones. Now let us elaborate this illustrative 

example from the perspective of the procedure given above. 

Assume that all the pixel locations in the image I are sorted in 

the ascending order of their gray values and we have direct 

access to them. We start with 
minhX  which is equivalent to the 

disconnected set B of Fig. 5. Following the same analogy, the 

set )(
min
ITh  corresponds to A. Given these two regions, 

minhX  

and )(
1min
ITh +

, we try to discover the new set of catchment 

basins that will form 
1min+hX together with the old set of 

catchment basins 
minhX . Obviously, all the regional minima 

associated with level hmin+1  are among the catchment basins at 

level hmin+1 and this constitutes the left term of the union in 

step (ii). Now, the remainder of )(
1min
ITh +

, that is different 

from the regional minima at level hmin+1 and 
minhX , have value 

hmin+1 and belongs either to the set of  catchment basins at level 

hmin or not. Hence by computing the geodesic influence zone 

of 
minhX  inside Thmin+1(I), we can assign the part of the latter 

that are associated with the set catchment basins at level hmin, 

to 
1min+hX and exclude the set of pixels that does not belong to 

any of the catchment basins. This set is indeed the set of 

watershed lines at level hmin+1. Since we can proceed similarly 

for all discrete gray-level pairs hi and hi+1 as suggested in step 

(ii), when the gray level hmax is reached we end up with the 

complement of the watershed lines, i.e. 
maxhX .  

C. Implementation of Vincent and Soille’s Algorithm 

The watershed lines that are obtained using the 

aforementioned procedure are often made of disconnected 

lines. Moreover, they happen to be very thick whenever they 

are equally distant from the catchment basins they separate. 

Vincent and Soille’s algorithm gets rid of these shortcomings 

by incorporating the labeling of each discovered regional 

minima and their associated pixels during the iterations. The 

end product of this approach is a labeled image with a possibly 

disconnected set of watershed pixels that are assigned to the 

label “zero” as a practical implementation hint. Each label 

corresponds to a catchment basin. Using this output image, one 

can either link the watershed pixels to obtain an image of 

contours or remove them to obtain a real tesselation of the 

original image into its different catchment basins. In order to 

link the watershed pixels, it suffices to give value “zero” to 

each pixel that has in its neighborhood a pixel with a smaller 

label. A morphological thinning is necessary afterwards in 

order to avoid the image be filled with watershed pixels. On 

the other hand, to remove the watershed lines, one should 

assign a watershed pixel to the label of one of its neighbors. In 

case of thick watershed lines where watershed pixels with no 

labeled neighbors occur, the procedure can be repeated until 

no more change is possible. 

Let us now describe the labeling phase from the perspective 

of practical implementation. For a given gray level h, suppose 

that all regional minima and hence their associated catchment 

basins are discovered and the corresponding pixels have been 

given a unique label. The pixels that belong to the next level 

h+1 can be accessed directly due to the initial sorting of pixels. 

Fig. 5. The geodesic influnce zones of B1 to B3 in the set A are 

shown in shades of gray. 
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Now, those pixels among them which have an already labeled 

pixel in their neighborhood are put into a queue so that the first 

element that is put into the queue can be first extracted. A 

specific pixel in the queue should be given the label of the 

closest catchment basin, i.e. the geodesic influence zone of 

which includes the pixel(this achieves the right-hand side of 

the union in step (ii) of the algorithm). After this, there only 

remain the pixels that belong to minima at level h+1 and that 

should be scanned to be given new labels.        

 The computational ease of Vincent and Soille’s algorithm 

is due to its two aspects: 

 

1) Initial sorting of pixels in the ascending order of their gray 

values so that each pixel can be directly accessed during 

the labeling phase (usually called the flooding step) 

2) The use of first-in-first-out data structure in order to keep 

track of the pixels being tested by computing the geodesic 

influence zones of the existing catchment basins. 

 

Without initial sorting of pixels, the whole image should be 

scanned for finding out the pixels that belong to each of the 

gray levels. On the other hand, in case first-in-first-out data 

structure is not used, the entire image should be scanned for 

changing just one pixel, a fact which is impractical from all 

perspectives. These two aspects together make the 

computation of watersheds of a typical 150×150 image takes 

approximately one second on a standard Pentium III 677 MHz 

PC. 

One property of Vincent and Soille’s algorithm is that it 

works with discrete gray levels. Accordingly, the values of the 

gradient image should be cast to integers. It is claimed that this 

fact may lead to inaccuracies. However, we think that this 

property have the effect of producing less segments, which is 

desirable from the perspective of oversegmentation.  

B. Region Merging   

PDE-based regularization creates almost piecewise constant 

areas, however in the presence of small variations within these 

areas, the watershed segmentation produces irrelevant 

segments that are not even sought after. In order to avoid such 

problems, a region merging procedure should follow 

watershed segmentation.  

For grayscale images, the region merging is relatively 

simple: neighboring regions that do not differ by more than a 

specified contrast value can be merged into each other. 

However, for the case of color images as in ours, the situation 

is more complicated and worth explaining. We have found two 

different approaches useful for the purpose of region merging. 

In one approach, we have borrowed from the field of 

agglomerative clustering. Each region is considered by a 

cluster characterized by the mean RGB vector of the pixels 

that belong to the region. That is each region has a vector 

attribute computed from the regularized image. Afterwards, we 

compute the distances between these vectors and merge two 

regions whose associated mean RGB vectors are closest two 

each other among all pair of regions. We proceed until only 

one region remains. The end result of these steps is a 

hierarchical tree or a dendrogram that consists of many 

upsidedown U shape lines connecting nodes in a hierarchical 

tree. The height of each U is the distance between the two 

regions to be connected at that time. If we cut the tree at a 

certain level and keep only the nodes of the tree that survive, 

we end up with a set of labels associated with each surviving 

node. The childs of such a node happen to be the regions that 

are to be given the label of that node. Obviously, this approach 

does not consider region adjacency, that is two regions that are 

far apart might be assigned to the same label. This subtlety can 

be overcome by a connected component procedure for labeled 

images so that disconnected regions of the same label can be 

assigned to different labels. Assignment of small irrelevant 

segments to larger regions can be carried in conjunction with 

this connected component procedure. This aproach has the 

important benefit that the number of segments does not have to 

be predetermined. 

In the other approach, the output of watershed segmentation 

is first scanned to mark neighborhood relationships and to take 

note of region areas. Starting from the smallest region, a 

current region is assigned to the neighboring region that is 

closest in terms of the distance between mean RGB vectors. 

The procedure is iterated until a predetermined number of 

regions is reached. 

We have observed that both region merging procedure 

operate equally well in reducing the number of segments to an 

acceptable value after watershed segmentation.          

     

IV. EXPERIMENTS 

We have tested the resulting method on two different types 

of images: synthetic color images with sharp edges and flat 

regions, and real color images. We have devised a variant of 

testing the synthetic images by adding white Gaussian noise of 

different variance levels into each of the channels. The 

performance of diffusion filtering is measured by the SNR 

values of the resulting PDE-regularized images, which is 

related to the variance of the pixels residing in flat regions. 

Ideally, the variance of those pixels should go to zero in the 

regularized version of the image since noise removal is a 

property of the diffusion filter. On the other hand, edge-

preserving property is compared visually. For watershed 

segmentation, we have found useful and illustrative to show 

the watershed contours in the abscence and presence of PDE-

based regularization. Real color images are tested in an 

unsupervised manner by just providing the cutting level of the 

tree described in Section III-D or the number of final segments 

for region merging phase. The results are evaluated based on 

semantic relevance of detected segments. 

A. Experiments with Synthetic Images 

As mentioned in Section II-C, eight different diffusion filters 

are implemented for regularization. Their performances are 

tested, first by computing the SNR value at each channel of the 

output given by: 
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where Ii and 
ipdeI  denote the i

th
 channel of the original and 

diffused noisy image, respectively. Those values are listed in 

Table 1. For better comparison, each filter is observed under 

equal conditions where the contrast parameter k (if available), 

the number of iterations T and the stepsize ∆t are taken 100, 20 

and 0.25, respectively.  It is clear that each diffusion filter 

exhibits certain improvement with respect to initial noise level. 

However, performance is significantly large for edge 

enhancing diffusion filters and for the anisotropic PDEs of 

Catté and Perona & Malik, whereas versions of coherence 

enhancing PDE show very little SNR improvement for 20 

iterations, due to their slow convergences. Basically, for the 

last four, T should be increased to the order of 100 to observe 

significant diffusion behavior. If not mentioned as “alternative 

metric” which is a simple addition of channel gradients, all 

filters employ Di Zenzo’s local geometry and results show that 

both metric exhibit more or less the same performance in terms 

of SNR. As a second measure, the output images, depicted in 

Fig. 6, are also inspected visually, whether their corresponding 

PDEs resulted in a displacement or blurring of the edges. Like 

their performances in terms of SNR, the edge enhancing 

diffusion filters and PDEs of Catté and Perona & Malik 

outperform the others. Blurring of the edges is especially 

significant in coherence enhancement filter and in Deriche’s 

method which is an undesired result especially for the next 

step of watersheds. In the case of coherence enhancement & 

coherence restoration diffusion, such a blurring may be 

avoided by decreasing β, which however will reduce the 

isotropic diffusion behavior in flat regions, making the process 

more noise sensitive and resulting in a lower SNR value. In 

terms of their remarkable overall performance, edge enhancing 

filters is preferred as a regularization tool for the watershed 

algorithm.  

Table 1. SNR values of at the output of diffusion filters 

Image 

SNR in 

 R 

channel 

(dB) 

SNR in  

G 

channel 

(dB) 

SNR in 

B 

channel 

(dB) 

Noisy image 7.51 8.13 7.21 

Catté et al. 

k = 100, T = 20 

 ∆t = 0.25 
19.23 19.75 18.49 

Perona & Malik 

k = 100, T = 20 

 ∆t = 0.25 
18.95 19.49 18.23 

Edge enhancing 

k = 100,  T = 20 

 ∆t = 0.25 
21.08 21.63 19.63 

Edge enhancing 

 (with alternative metric) 

 k = 100,  T = 20 

 ∆t = 0.25 

22.07 22.34 19.00 

Coherence enhancing 

k = 100, β = 0.1 

 T = 20 

∆t = 0.25 

10.32 10.79 9.46 

Beltrami flow 

T=20,  ∆t = 0.25 
7.53 8.15 7.23 

Deriche  et al. 

α = 0.001, T = 20  

∆t = 0.25 
8.48 9.09 8.16 

Deriche et al. 

(with alternative metric) 

α = 0.001, T = 20 

∆t = 0.25 

8.50 9.11 8.18 

 

Fig. 6. (a) Original color image, (b) Noisy image, (c) Catté diffusion, (d) Perona & Malik diffusion, (e) Edge enhancing 

diffusion with Di Zenzo metric, (f) Edge enhancing diffusion with alternative metric, (g) Coherence enhancing diffusion, 

(h) Beltrami flow, (i) Deriche diffusion with Di Zenzo metric, (j) Deriche diffusion with alternative metric 
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In Fig. 7, the results of watershed segmentation of a synthetic 

image and its noisy versions are shown. The image is designed 

so that there are four flat regions separated by sharp, solid 

lines.  The noise variances are 64, 128 and 256 respectively. In 

the second column  of Fig. 7, we see watershed segmentation 

results when no regularization is performed a priori, in the 

third column results after regularization are shown. In the case 

of no noise, the result is satisfactory and equivalent for both 

cases as expected. However, as the noise level increases, the 

inherent oversegmentation problem of watershed segmentation 

arises when no regularization is performed. There are too 

many irrelevant segments inside the detected contours and 

their semantic quality are debatable. On the other hand when a 

regularization is carried a priori, we end up with watershed 

contours incomparably better than the ones of the former case.   

In a second experiment with synthetic images, we have 

used an image with again flat regions with curved, thin 

contours and investigated the accuracy of watershed 

segmentation in the presence of of additive Gaussian noise. In 

order to illustrate the effectiveness of PDE-based 

regularization we also provide the results of direct application 

of watershed segmentation in Fig. 8. The first row of Fig. 8 

corresponds to no noise case. The watershed contours are 

superimpoed with the original image in the middle and right 

columns, where we show the results with no regularization and 

after regularization respectively. For this image too, we again 

experimented with noise variances 64, 128 and 256. We only 

show the result of the most severe case, i. e. noise variance is 

256, since even in this case the watershed segmentation after 

regularization yields accurate contours with some occasional 

isolated pixels that can easily be removed by post-

processing(Fig. 8 second row, right). Again when no 

regularization is performed, there are  too many subtle 

segments(Fig. 8 second row, middle).  

Fig. 7. A synthetic image and its noisy versions with noise variance 64, 128 and 256 (first column); watershed contours 

extracted without prior regularization (second column); watershed contours extracted with prior regularization (third column).  
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B. Experiments with Real Images 

We have tested our color image segmentation algorithm on 

several real images. The results concerning two of them are 

shown in Figs. 9(“Boots” image) and 10(“Lady” image) step 

by step. For both image, we have applied PDE-based 

regularization based on edge-enhancing diffusion filter with 

contrast parameter k=30, number of iterations 10 and step size 

∆t=0.25. The original image, its regularized version and the 

common gradient map computed from the regularized image 

are shown in the top row of Figs. 9 and  10. Observe that high 

gradient areas are well located. In the second row, watershed 

contours at the end of each step are shown. The leftmost one is 

the output of watershed segmentation applied to regularized 

image. This image of contours is to be processed in order to 

have the watersheds get connected as described in Section II-

C. Linked watershed lines are shown in the middle. They 

enclose a number of semantically irrelevant or very small 

segments that should be merged into each other as described in 

section II-D. The number of insignificant segments is more 

emphasized in “Boots” image than in “Lady” image. The 

rightmost columns of the second rows in Figs.  9 and  10, 

exhibit the watershed contours obtained after region merging. 

Finally, the images of third columns reflect the end result of 

our color image segmentation algorithm, segment boundaries 

are superimosed with the original images. For both cases, 

segment boundaries are fully connected and divide the image 

into a set of labeled regions that form a real tesselation of the 

original image. Furthermore, detected segments are very 

similar to those that can be visually extracted. This shows that 

all the relevant segments are kept by our segmentation 

algorithm.  

V. DISCUSSION AND CONCLUSION 

In this work, we have proposed an extension to a well 

founded segmentation technique, i.e. watershed segmentation 

which is originally proposed for grayscale images, in order to 

achieve fast and accurate segmentation of color images. 

Furthermore, we have explored possibilities of regularizing 

color images based on nonlinear diffusion PDEs using a 

gradient information which is common to all channels.  

Resulting implementations of vector PDEs prove to be very 

efficient in reducing the oversegmentation problem inherent to 

watershed technique. Furthermore, our Matlab code processes 

an image of size 150×150 in approximately 2 seconds on a 

Pentium III 677 MHz PC for 10 iterations of diffusion. Our C 

implementation of watershed transformation is based on 

Vincent & Soille’s fast watersheds and takes less than 1 

second for the same type of images on the same PC. We 

observed that the results of watershed segmentation were 

satisfactorily accurate for PDE-regularized color images. 

Moreover, the watershed technique with efficient post-

processing(linking and thinning the watershed lines)  yield 

connected segment boundaries, hence the net effect of the 

overall procedure is a true tesselation of the color image under 

study. In addition to these steps, the use of a region merging 

procedure is necessary to suppress semantically irrelevant 

segments.  Actually, the time bottleneck of our algorithm is the 

region merging phase implemented in Matlab. According to 

the number of regions that watershed segmentation produces, 

region merging lasts from 3 to 6 seconds or even more. In 

total, our algorithm can fullly automaticly, except the cut-level 

of the hierarchical tree at the region merging phase, segment a 

typical color image  in approximately 10 seconds. If we think 

of carrying the implementation of regularization into C 

language, we will end up with a very fast and satisfactorily 

accurate color image segmentation scheme. 

 

 

Fig. 8. A synthetic image and it noisy version with noise variance 256 (first column); watershed contours extracted without 

prior regularization shown superimposed with the original image (second column); watershed contours extracted with prior 

regularization superimposed with the original image (third column).  
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Fig. 9. “Boots” image, its regularized version and the gradient common to all channels (first row); watershed lines at the output of 

Vincent and Soille’s algorithm, watershed lines after post-processing , segment boundaries after region merging (second row); final 

segmentation result: segment boundaries superimposed with the original image (third row, middle).    
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Fig. 10. “Lady” image, its regularzied version and the gradient common to all channels (first row); watershed lines at the output 

of Vincent and Soille’s algorithm, watershed lines after post-processing , segment boundaries after region merging (second 

row); final segmentation result: segment boundaries superimposed with the original image (third row, middle).    


