
AN EFFICIENT ALGORITHM FOR ATTRIBUTE OPENINGS AND CLOSINGS

Jérôme Darbon1,2 and Ceyhun Burak Akgül2,3

1EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire F-94276 Le Kremlin Bicêtre, France

2Département Signal-Images, Ecole Nationale Supérieure des T́elécommunications (ENST)
46, rue Barrault F-75643 Cedex 13 Paris, France

3 Electrical and Electronics Engineering Department, Bogazici University
34342 Bebek, Istanbul, Turkey

{jerome.darbon, akgul}@enst.fr

ABSTRACT
In this paper, we present fast algorithms for area opening and
closing on grayscale images. Salembier’s max-tree based al-
gorithm is one of the well known methods to perform area
opening. It makes use of a special representation where each
node in the tree stands for a flat region and the tree itself is
oriented towards the maxima of the grayscale image. Prun-
ing the tree with respect to some attribute, e.g., the area, boils
down to attribute opening. Following the same approach,
we propose an algorithm for area opening (closing) with-
out building the max-tree (min-tree). Our algorithm exhibits
considerable performance compared to the state-of-the art in
this domain.

1. INTRODUCTION

In the domain of morphological image processing, connected
operators have received considerable interest within the last
decade especially after their theoretical foundations have
been demonstrated in [11]. Their well known quality, namely
simplifying an image without moving any of its contours
[1] have been used in many applications such as image fil-
tering [13], restoration and segmentation [4, 12]. Attribute
openings (closings) are versatile filters in the sense that they
can be used in diverse applications. In [1], the authors have
demonstrated how to exploit area morphology in image clas-
sification. Sequence processing constitutes another niche of
application for these filters [10]. Area opening (closing) [13]
constitutes a benchmark instance of connected operators. In
this paper, we present a new technique for its implementa-
tion.

An attribute opening can be realized by using a tree-based
image representation where each node in the tree stands for
a flat region or a connected component. The tree itself is ori-
ented towards the maxima of the grayscale image and hence
is called a max-tree [10]. Once the max-tree is constructed
using a hierarchical queue data structure, in order to filter
a grayscale image one needs to measure a specific attribute
associated with the connected component of each node and
to decide whether to keep the component or merge it to its
father. Decision is based on comparing the value of the at-
tribute against a prescribed threshold. By duality, an attribute
closing can be performed similarly but with a slight modifi-
cation: this time the tree is oriented towards the minima of
the image and is called a min-tree. The filtering process for

an attribute closing, i.e., successive attribute measurements
and decisions, is identical to the case of an attribute opening.

Direct implementations of these filters that do not rely on
trees are also possible [2, 8, 13]. In [13], Vincent introduced
a priority-queue algorithm for area opening and closing.
Later in [2], Breen and Jones extended Vincent’s priority-
queue algorithm to the general case of attribute openings and
closings. In [8] which is also a good survey of connected set
openings and closings, Meijster and Wilkinson presented the
union-find approach in which case regional extrema are pro-
cessed simultaneously in contrast to queue-based algorithms
where the processing is performed sequentially.

In this paper, we present an implementation based again
on the tree pruning strategy, using area as the attribute. Nev-
ertheless, our algorithm does not build any tree in contrast to
those that first explicitly build the tree and then prune it for
filtering [5, 6, 7, 9, 10].

In that sense, the present work can be considered as a
direct approach which proves to be considerably fast. The
rest of the paper is organized as follows. In section 2, we
describe our algorithm for area opening (closing). Section
3 is devoted to the experiments we carried on natural and
synthetic images. We compare our area opening (closing)
approach to the original tree-based algorithm [10] and to the
union-find approach [8]. Finally in section 4, we discuss
possible extensions and draw some conclusions.

2. ALGORITHMS FOR AREA OPENING AND
CLOSING

In [10], Salembier presents a three-stage algorithm which
consists of tree creation, filtering and image restitution
stages. The crucial part of the algorithm is tree creation us-
ing a recursive flooding procedure. We briefly describe it in
order to introduce our approach. In Salembier’s algorithm,
the hierarchical first-in-first-out (FIFO) data structure is of
great importance. It is made ofL queues each of which cor-
responds to one of theL gray levels. For instance, such a
queue at levelh determines the processing order of the pixels
of grayscale valueh. A status array of the same size as
the image stores the information regarding the pixels. Ac-
cordingly, a pixelp at levelh can be in one of the follow-
ing three states:NOTANALYZED, IN THE QUEUEor as-
signed the valuek. The latter determines whichhth level
node, i.e., which connected component at levelh, the pixel

belongs to. Another auxiliary array of lengthL can be re-
ferred asNUMBERNODES[h] and stores the index of the
connected component, at levelh, which is being processed.
Depending on whether an opening or a closing is desired, the
flooding procedure starts at lowest or highest gray level re-
spectively and it consists of two successive steps: first a prop-
agation step, where all the pixels of a connected component
at the current level are explored, and then a parent resolving
step where explicit construction of tree branches occurs. Fur-
ther details concerning the dynamics of the algorithm can be
found in [10].

Our algorithm for area opening relies on the flooding pro-
cess of the max-tree but recall that we are not interested in
building this tree. So, in a sense, we combine the filtering
stage with the flooding process. Before describing our algo-
rithm, we present some data structures we need. The idea
is to use the arraystatus to store different type of infor-
mation: it can store points which act as pointers to points
in order to implement a hierarchical queue or to keep track
of disjoint sets; or it can store gray-level values. We store
pointers to pixels with a non-negative integer whose value is
y∗width+x wherex andy are pixel coordinates, andwidth
is the width of the original image. In contrast, we use a nega-
tive number in order to store a gray-level value. For our algo-
rithm a gray-level valueh is stored as−h−1. Thus pointers
are encoded as non-negative values, and gray-level values as
negative values.

Basically, during the flooding process, once a pixel has
been removed from a queue, we make it point to an arbi-
trary pixel which represents its component. Components are
merged while keeping track of their areas until a component
has an area large enough to fulfill the criterion. Areas of cur-
rently extracted connected components are stored in an extra
array of lengthL, calledarea .

To implement a queue using the arraystatus we need
an extra array,last , of lengthL. It contains the last el-
ement added to the queue and initialized to a special value
NONEwhich means that no element is in the queue. An illus-
tration of simulating a queue with these arrays is depicted in
Figure 1.

In order to have a representative element for each of the
extracted components at a given level, we need again an extra
array, representative , of lengthL. Each time a new
component is being extracted, its first encountered element
is stored in this array. The latter is initialized to a special
valueNONEwhich means that there is currently no element
to represent the component.

We are now ready to describe the core of our algorithm.
Like for the Salembier’s algorithm, we launch the flooding
with a pixel which has the lowest gray-level. The array
status is initialized toNOTANALYZED. The whole algo-
rithm is depicted in Figure 2. Once an elementp has been
dequeued (lines 4-5), it cannot be added to the queue any-
more. Thusstatus[p] is set to the representative element
of the current extracted component (line 7). If a pixel in the
neighborhood ofp (denoted byNp) which has not been pro-
cessed is encountered, then it is added into the hierarchical
queue (lines 13-14); and if it is a new component, then we
update the arrayrepresentative (lines 11-12). If the
level of this new pixel has a higher gray-level value than the
current extracted component, then we launch again the flood-
ing with that level (lines 16-18).

Once the propagation of a levelh is over, we have to

check whether this extracted component will keep its gray-
level valueh or not. This is determined by the value in
status associated withrepresentative[h] . First we
get, if it exists, the component at levelm with the highest
lower level thanh (lines 23-25). If it does not exist, then it
is the darkest level of the image and its gray-level is stored
(line 35). If such a component exists then we check if the
current extracted component at levelh has a large enough
area. If not, we merge it with its parents, i.e, the compo-
nent at levelm (lines 28-29). If it is large enough then the
final gray-level value is kept (line 33). In both cases, the area
is updated (lines 38 and 40). Finally, since the flooding at
level h is over, we re-initialize information associated with
this level (lines 38-40).

At the end of the flooding process, every pixel in the ar-
raystatus stores either pointers to representative nodes or
gray-levels (in the negative form). Thus we perform a resolv-
ing phase such that all pixels stores its associated gray-level
value (still in negative form). This process is depicted in Fig-
ure 3. A final pass on the image sets the pixels to their real
gray-level values.

(a) (b)

(c) (d)

Figure 1: Illustration of our queue. The states ofstatus
and last are depicted after different operations on points
which are at the same gray-level value: in (a) the original
state, in (b) after pushing the point(5,5), in (c) after pushing
the point(3,5), and in (d) after a pop.

3. COMPLEXITIES AND EXPERIMENTS

In what follows,N andL respectively denote the number of
pixels of the original image and the number of gray-levels.
Typically L is equal to 256.

From a theoretical point of view, the computational com-
plexity of the union-find method isΘ(N logN) as shown in
[8]. The complexity of Salembier’s and our algorithm is
Θ(N) because it is mainly dominated by the flooding pro-
cess. The resolving process is also linear.

Considering the use of memory, our algorithm is the best
one. Indeed, apart from the original image, the union-find

1 flood (h)
2 while (last [h] == NONE)
3 // propagation at level h
4 p = last [h]
5 last [h] = status [last [h]]
6 // set to its representative element
7 status [p] = representative [h]
8 for all q∈Np such that q∈Ω
9 if (status [q] == NOT_ANALYSED)

10 // set representative element if none
11 if (representative [h] == NONE)
12 representative [h] = p
13 status [p] = last [h]
14 last [h] = p
15 val = I [q]
16 if (val > h)
17 m= q_val
18 do {m= flood (m)} while (m> h)
19 area [h] +=1
20

21 // parent settings
22 m= h−1
23 while ((m>= 0) and
24 (representative [m] == NONE))
25 −−m
26 if (m>=0)
27 if (area [h] < criteria)
28 status [representative [h]]=
29 representative [m]
30 area [m] += area [h]
31 else
32 area [m] = criteria
33 status [representant [h]] = −h − 1
34 else
35 status [representant [h]] = −h − 1
36 // reset attribute of extracted connected component
37 // at level h
38 area [h] = 0
39 last [h] = NONE
40 representative [h] = NONE
41 return m

Figure 2: Generic flooding process for an area opening

for all p∈Ω
root = status [p];
while (status [root] >= 0)

root = status [root];
val = status [root];
while (p != root)

tmp = status [p]; status [p] = val ; p = tmp ;

Figure 3: Resolving process after the flooding process.

method needs two arrays ofN integers. The first one is used
to sort the pixels while the second one is required to maintain
the disjoint sets and to store the area. So its required mem-
ory is 2N integers. The max-tree approach is the method with
the most pronounced memory requirement. It needs a hier-
archical queue (N integers), an array ofN integers for the
status array, and finallyN nodes for the tree. Each node con-
tains a pointer to its parent, its area, and its output gray-level
value (so 3 integers for each node). In total, the max-tree
algorithms requires 5N integers. Our algorithm needs only
an array ofN integers. Note that sinceL � N, we neglect
the memory used by arrays of sizeL for both the max-tree
and our approach. If the attribute is not based only on the
area anymore, more memory is required: An extra array of
sizeN is needed for both the union-find and the max-tree ap-
proaches, while our algorithm requires only an extra array of
sizeL.

All of the algorithms cited above have been implemented
in C/C++ and compiled with full optimizations. We have
used different images to perform our experiments. The
first image is a synthetic image which depicts a chessboard
(512x512) whose cell size is 2. The other ones are natural
images: the well-known lena (512x512), a highly textured
image of a carpet (715x1024) and finally a satellite image
(1780x1380). Due to space restriction, we only present the
results for these images. For each image, time results (in
seconds) for area opening with different area thresholds are
shown in Figure 4. Time results were obtained by taking
the mean CPU times on a Pentium 4 3.0GHz (1024 Kb of
cache memory) over 20 runs. Note that same performances
were obtained using a Celeron 2.6GHz with 256 Kb of cache
memory. As seen on Figure 4, our algorithm outperforms the
other approaches for natural images. The unique instance
where the union-find algorithm is superior to ours happens
for the synthetic chessboard image which contains only two
graylevels. We observe that the superiority of our algorithm
depends on the content of the image (synthetic versus natu-
ral), but not on the image size. It is interesting to see that
for natural images the union-find algorithm outperforms the
max-tree only for the satellite image which has 30 graylevels.
It seems that the fewer the graylevels are, the faster the
union-find behaves. Execution time of our algorithm is in-
dependent of the area threshold chosen. The same obser-
vation holds for the max-tree approach while only a slight
dependence to area is observed for the union-find approach.
Similar results for attributes other than area are available at
http://www.perso.fr/˜darbon/eusipco .

Figure 5 illustrates the use of an area-closing for a seg-
mentation task. A classical approach using morphological
tools consists of computing the norm of the gradient of an
image and to apply the watershed transform on it [12]. How-
ever, it yields an over-segmentation due to many spurious
minima in the gradient. So, we filter the gradient image by
applying an area-closing. As seen in Figure 5, when the area
threshold is increased, the image is significantly simplified
while the countours are preserved [1].

4. CONCLUSION

In this paper we have presented an efficient algorithm to per-
form attribute openings and closings. It performs very sat-
isfactorily on natural images. Moreover, it requires much
less memory than any other algorithm available to our knowl-

(a) (b)

(c) (d)

Figure 4: Time results of an area-opening using the max-tree
approach (dots), the union-find-method (dashed) and our al-
gorithm (solid) as a function of area (Results for chessboard,
lena, carpet and satellite images in (a), (b), (c) and (d) re-
spectively).

edge. Further investigation on the behavior of the union-find
approach with respect to image content (especially, the num-
ber of available graylevels) must be explored.

We are currently working on the extension of our algo-
rithm to non-increasing attributes which correspond to thin-
nings and thickenings [2], and on computing pattern spectra.
Finally, extension of this approach to the grain filter [3] is
currently under investigation.

Acknoledgement

The authors would like to thank M.H.F. Wilkinson (Univer-
sity of Groningen) for providing the code of the union-find
approach [8].

REFERENCES

[1] S.T. Acton and D.P. Mukherjee. Scale space classifi-
cation using area morphology.IEEE Transactions on
Image Processing, 9(4):623–635, April 2000.

[2] E.J. Breen and R. Jones. Attribute openings, thinnings
and granulometries.Computer Vision and Image Un-
derstanding, 64(3):377–389, 1996.

[3] V. Caselles and P. Monasse. Grain filters.J. of Math.
Imaging and Vision, 17(3):249–270, 2002.

[4] J. Crespo, R. Schafer, J. Serra, C. Gratin, and F. Meyer.
The flat zone approach: A general low-level region
merging segmentation method.Signal Processing,
62(1):37–60, 1998.

(a) (b)

(c) (d)

Figure 5: Illustration of the effect of an area closing. The
original image is depicted in (a). An area closing is per-
formed on the norm of the gradient and the watershed trans-
form is applied. Results for area closings of area 10, 50 and
100 are respectively depicted in (b), (c) and (d).

[5] W.H. Hesselink. Salembier’s min-tree algorithm turned
into breadth first search.Information Processing Let-
ters, 88(5):225–229, December 2003.

[6] X. Huang, M. Fisher, and D. Smith. An efficient imple-
mentation of max tree with linked list and hash table.
In Proc. of the Int. Conf. on Digital Image Computing:
Techniques and Applications, pages 299–308, 2003.

[7] R. Jones. Connected filtering and segmentation using
component trees.Computer Vision and Image Under-
standing, 75(3):215–228, September 1999.

[8] A. Meijster and M.H.F. Wilkinson. A comparison of al-
gorithms for connected set openings and closings.IEEE
Trans. on PAMI, 24(4):484–494, Avril 2002.

[9] L. Najman and M. Couprie. Quasi-linear algorithm for
the component tree. InSPIE Symposium on Electronic
Imaging, pages 18–22, 2004.

[10] P. Salembier, A. Oliveras, and L. Garrido. Antiex-
tensive connected operators for image and sequence
processing.IEEE Transactions on Image Processing,
7(4):555–570, April 1998.

[11] J. Serra and P. Salembier. Connected operators and
pyramids. InProc. SPIE Image Algebra Math. Mor-
phology, volume 2030, pages 65–76, 1993.

[12] P. Soille.Morphological Image Analysis Principles and
Applications. Springer-Verlag, 1999.

[13] L. Vincent. Grayscale area openings and closings, their
efficient implementation and applications. InProc.
EURASIP Mathematical Morphology and Its Applica-
tion to Signal Processing, pages 22–27, 1993.

