dads 2009 | 2010 spring

Theme: Data Mining for Architecture and Urban Planning

Lecture VClassification

Ceyhun Burak Akgül, PhD in EE Ahu Sökmenoğlu, M. Arch.

Working Example – 1/2

Concept

A "Taşkışla" Student

Attributes

Age
Gender
Year
Department
#Projects
FirstChoice
HappyWithChoice
ColleageInFamily
AltProfession

LivesWith LivesWhere TimeSpentTo... BeenAbroad
#Languages
PlaysInstrument
Dancing
BeenInFestival
PracticeSports
ReadNewspapers
ReadComics
EnjoyLiterature

Uses3DModelingSW
UsesGraphicsSoftware
WorkedAtOffice
DesignDraftChoice
OfficeOrSite
FaveCourses

FollowsProfPeriodicals
FollowsProfActivities
VoluntaryProfActivities
SpendsTimeAtTaskisla
ActiveStudentClubber

Working Example – 2/2

Data Table: N Subjects (i.e. Student Instances)

	Age	Gender	Year	Dept	#Projects	Нарру
	↓	↓	↓	1	\downarrow	↓
Subject ID	Att1	Att2	Att3	Att4	Att5	Att6
1	21	F	3	Arch	6	Yes
2						
3						
4						
5						
6						
7						
8					Duadiatan	attributas
9					Predictor	attributes
						/S
N					Target a	ttributes
					141500	

Naïve Bayes Classifier – 1/3

Reverend Thomas Bayes once said...*

^{*} Essay Towards Solving a Problem in the Doctrine of Chances (1764)

Naïve Bayes Classifier – 2/3

The classification problem is, having observed a set of attributes F about an entity X, to assign X to one of the possible classes C = C1, C2, ..., Ck

The best possible classification rule is

Assign X to
$$C^*$$

such that $P(C^* | F) > P(C | F)$
for all $C \neq C^*$

Naïve Bayes Classifier – 3/3

One of the problems is how to obtain P(C | F) when F consists of **multiple attributes**, i.e., F = (F1, F2, ..., Ft)

Naïve Bayes is a naïve but working approach

$$P(C \mid F) \propto P(F \mid C)P(C)$$

$$= P(F1,F2,...,Ft \mid C)P(C)$$

$$= P(F1 \mid C) \times P(F2 \mid C) \times ... \times P(Ft \mid C)P(C)$$
-by statistical independence-

Naïve Bayes in Action

On a blank paper, write

- Your preferred movie:
 - **English Patient or The Godfather?**
- Your preferred color: red or blue or else?
- Do you like Obama? YES or NO.
- Your gender

Then we'll have some fun...

Nearest Neighbors

A picture is worth one thousand words...

Decision Trees – 1/2

Decision Trees – 2/2

How to grow a decision tree? - A Generic Option

- Sort the attributes by the amount of information they individually contain on the target variable
- Start with the most informative attribute
- Find a splitting point on the current attribute's range of values so as to obtain the least misclassification possible
- Exhaust all the features recursively

Informativeness? Splitting point? Misclassification? Recursively?

Assignments for next week

Consider your part in The Survey

- (A) Identify the attributes
- (B) Determine <u>how to code</u> these attributes (their range of values)
- **(C)** Specify <u>one by one</u> the relationships you aim at discovering, <u>and for each case</u>
 - (C.1.) Determine predictor attributes
 - (C.2.) Determine target attributes