dads 2009 | 2010 spring

Theme: Data Mining for Architecture and Urban Planning

Lecture IVStatistics Primer

Ceyhun Burak Akgül, PhD in EE Ahu Sökmenoğlu, M. Arch.

In this lecture

- Objectives of Statistics
- Measurement and Randomness
- Data Tables
- Histograms
- Centrality and Variability Measures
- Correlation

• ...

Objectives of Statistics

- Descriptive statistics
 - Summarize tangible facts about a population
- Inferential statistics
 - Explain the machinery producing a population
 - Estimate a parameter of the machinery
 - Predict what this machinery would produce under like circumstances

Objectives of Statistics

- Descriptive statistics
 - Summarize tangible facts about a population
- Inferential statistics
 - Explain the machinery producing a population
 - Estimate a parameter of the machinery
 - Predict what this machinery would produce under like circumstances

This lecture is mainly about descriptive statistics

Measurement

(...)
How to *measure* a season
against the calendar of your absence?

How to *measure* the stream of my tangled light in the mountain of what has been and will be? (...)

John Berger

Measurement

Properties of measurements

- Magnitude
- Equal intervals
- Absolute zero

Scales of measurement

- Ratio scale: weight, height
- Interval scale: temperature (Celcius, Fahrenheit)
- Ordinal scale: preferences, ratings
- Nominal scale: eye color, gender

Measurement

Why do measurements differ?

Randomness

Does God play dice?

Data Tables

Examples

- Demographics of student population
- Financial indicators of a company
- Climate data

— ...

Data Tables

Let's construct a data table!

	Var 1	Var 2	Var 3		Var K
Instance 1	<value></value>	<value></value>	<value></value>	<value></value>	<value></value>
Instance 2	<value></value>	<value></value>	<value></value>	<value></value>	<value></value>
Instance 3	<value></value>	<value></value>	<value></value>	<value></value>	<value></value>
•••	<value></value>	<value></value>	<value></value>	<value></value>	<value></value>
Instance N	<value></value>	<value></value>	<value></value>	<value></value>	<value></value>

dads 2009 | 2010 spring

Histograms -1/3

Histograms – 2/3

- What can you do with a histogram?
 - Did the population succeed in general
 - Percentage of people who got an A
 - Percentage of people who got a C or higher

— ...

Histograms – 3/3

- Conditional histograms
 - Consider an additional variable that adds to the description of the population (gender, age, ...)
 - You can identify a subgroup w.r.t. to the additional variable and construct the histogram out of the subgroup
 - This is a conditional histogram

Centrality Measures* – 1/2

- Mean
- Median
- Mode

* See whiteboard

Centrality Measures – 2/2

Mean, Median, Mode: Which one to use?

- Mean
 - stable measure
 - descriptive for symmetric data
 - ratio or interval scale
- Median
 - suitable when the histogram is skewed of there are outliers
 - Ratio, interval, or ordinal data
- Mode
 - You have no other choice for nominal data

Variability Measures* – 1/2

- Range
- Interquartile range
- Variance
- Standard deviation

* See whiteboard

Variability Measures – 2/2

Range, IQR, Variance, Std. Dev.: Which one to use?

- Range
 - Sensitive to outliers
- Interquartile range (IQR)
 - Good option when data is skewed
- Variance
 - Use standard deviation instead
- Standard Deviation (Std. Dev.)
 - Stable
 - Good option when data is symmetric

Correlation – 1/4

Correlation is one of the many possible ways to quantify how a (random) quantity vary w.r.t. another.

18

Correlation – 2/4

Correlation is one of the many possible ways to quantify how a (random) quantity vary w.r.t. another.

Correlation – 3/4

Correlation is one of the many possible ways to quantify how a (random) quantity vary w.r.t. another.

How to compute correlation?

Pearson's correlation coefficient – see whiteboard.

Correlation – 4/4

Correlation does not imply causality!

Post hoc ergo propter hoc?

Where are we?

week	date	studio
1	9-Feb	-
2	16-Feb	Introduction: Data Mining in General
3	23-Feb	Concepts in Data Mining
4	2-Mar	Data Mining Applications in Context
		Introduction to Semester Project
5	9-Mar	Statistics Primer
6	16-Mar	A Broad Picture of Data Mining Tools
		Jury Meeting; Semester Project's first concepts & ideas
7	23-Mar	Regression and Classification
8	30-Mar	Clustering, Exploratory Data Analysis, and Visualization
		Semester Project's review
9	6-Apr	Semester Project's review
10	13-Apr	Semester Project's review
11	20-Apr	Jury Meeting; Presentations
12	27-Apr	Semester Project's review
13	4-May	Semester Project's review
14	11-May	Jury Meeting; Final Presentations

Let's talk about the last week's assignment

Think of the "City" as a concept:

- Designate a set of attributes related to the city
- Instantiate the "city" concept with several examples
- Specify the attributes of your "city" examples

What kind of knowledge descriptions can you extract with your chosen set of attributes?

Do the reverse*