Computer Vision Course Lecture 02

Image Formation Light and Color

Ceyhun Burak Akgül, PhD cba-research.com

2D Image

Tools:
Geometry
- Machine Learning
- Calculus
- Signal Processing
- graph Theory
- Optimization

Photo credit: Olivier Teboul vision.mas.ecp.fr/Personnel/teboul

Spring 2015
Last updated 04/03/2015

Course Outline

Image Formation and Processing

Light, Shape and Color

The Pin-hole Camera Model, The Digital Camera
Linear filtering, Filter banks, Multiresolution

Feature Detection and Matching

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors

Feature Matching and Hough Transform

Multiple Views and Motion

Geometric Transformations, Camera Calibration Feature Tracking , Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing
Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview
Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

В

В

A Very Primitive Image

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole Camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Pinhole Camera

f = focal lengthc = center of the camera

Mapping 3D World to 2D Plane

What is lost?

Length

Length is not preserved

Mapping 3D World to 2D Plane

What is lost?

- Length
- Angle

Mapping 3D World to 2D Plane

What is preserved?

Straight lines are still straight

Vanishing Points and Lines

Parallel lines in the world intersect in the image at a "vanishing point"

Vanishing Points and Lines

Vanishing Points and Lines

Mapping 3D World to 2D Plane

Projection = World coordinates → Image coordinates

Adding a Lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- Other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Basic Characteristics of a Lens

A lens focuses parallel rays onto a single focal point

- Focal point at a distance f beyond the plane of the lens
- Aperture of diameter D restricts the range of rays

Depth of Field

Changing the aperture size or focal length affects depth of field

Image Formation

Digital Camera

The Eye

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

(Specular Interreflection)

Digital Camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types: Charge Coupled Device (CCD) and CMOS

http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Sampling and Quantization

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

The Eye

The human eye is a camera!

- Iris Colored annulus with radial muscles
- **Pupil** The hole (aperture) whose size is controlled by the iris
- Retina: Cones and Rodes The «Film»

The Retina

Two Types of Light-Sensitive Receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision (shape)

Electromagnetic vs. Visible Spectrum

Light Source Spectra

Some examples of the spectra of **light sources**

Reflectance Spectra

Some examples of the **reflectance** spectra of **surfaces**

There is no simple functional description for the perceived color of all lights under all viewing conditions, but there is...

A helpful constraint:

Consider only physical spectra with normal distributions

Photons

Wavelength

Wavelength

Photons

Wavelength

Physiology of Color Vision

Tetrachromatism

- Most birds, and many other animals, have cones for ultraviolet.
- Some humans, mostly female, have slight tetrachromatism.

Practical Color Sensing: Bayer Grid

Estimate RGB at 'G' cells from neighboring values

Color Image

Images in Matlab

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
 - im(1,1,1) = top-left pixel value in R-channel
 - im(y, x, b) = y pixels down, x pixels to right in the b^{th} channel
 - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

column —												\Rightarrow				
row	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	R				
1	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91					
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	ı G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95		0.91			
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85		0.91 0.92			,B
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74		0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	0.79		
	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0 99	0.45	0.33	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	
0.91 0.94				0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.82	0.93		
					0.05	0.75	0.50	0.00	0.75	0.72	0.77	0.75	0.71	0.90	0.99	
CBA Research Computer Vision					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	16
				0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	46	

Color Spaces

How can we represent color?

Color Spaces: RGB

Default color space

Some drawbacks

- Strongly correlated channels
- Non-perceptual

Color spaces: HSV

Intuitive color space

H (S=1,V=1)

S (H=1,V=1)

V (H=1,S=0)

Color spaces: YCbCr

Fast to compute, good for compression, used by TV

Cb (Y=0.5,Cr=0.5)

Cr (Y=0.5,Cb=05)

CBA Research Computer Vision

50

Color spaces: L*a*b*

"Perceptually uniform"* color space

(a=0,b=0)

a (L=65,b=0)

b (L=65,a=0)

Luminance or Chrominance?

Only Color (Chrominance)

Only Intensity (Luminance)

Back to Grayscale

Course Outline

Image Formation and Processing

Light, Shape and Color
The Pin-hole Camera Model, The Digital Camera
Linear filtering, Filter banks, Multiresolution

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors

Feature Matching and Hough Transform

Multiple Views and Motion

Geometric Transformations, Camera Calibration Feature Tracking, Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing
Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview
Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

Resources

Books

- R. Szeliski, Computer Vision: Algorithms and Applications, 2010 available online
- D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003
- L. G. Shapiro and G. C. Stockman, Computer Vision, 2001

Web

CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Dictionary of Computer Vision and Image Processing

http://homepages.inf.ed.ac.uk/rbf/CVDICT/

Computer Vision Online

http://www.computervisiononline.com/

Programming

Development environments/languages: Matlab, Python and C/C++

Toolboxes and APIs: OpenCV, VLFeat Matlab Toolbox, Piotr's Computer Vision Matlab Toolbox, EasyCamCalib Software, FLANN, Point Cloud Library PCL, <u>LibSVM</u>, <u>Camera Calibration Toolbox for Matlab</u>