Image Alignment

In this assignment, you will experiment with a toy image alignment problem. You will use the provided Lena image throughout the assignment (also shown below – use the provided image file in your assignment, not the one below for display).

Your step-by-step tasks and questions are below:

- (1) Reduce the size of the original image by a factor of 2. Display the resulting image. What is the geometric transformation to this effect? Write it down.
- (2) Rotate the rescaled image of step (2) by 30 degrees in the clockwise direction. Display the resulting image? What is the geometric transformation to this effect? Write it down.
- (3) Write down the combined transformation, i.e., the one that first rescales the image down by a factor of 2, then rotates the rescaled image by 30 degrees in the clockwise direction.
- (4) Apply the combined transformation directly to the original image. Display the resulting image. Is it different than the one you obtained in step (2) (*Hint:* It shouldn't be!). Explain any observed differences.
- (5) Run your favorite interest point detector (e.g., Harris) on both the original and the transformed images. Display the identified interest points overlaid on the images.
- (6) Find correspondences between the keypoints found in step (5). Visualize your results. Comment on correct and especially incorrect matches.
- (7) Eliminate wrong matches by an automated procedure (e.g., applying 1NN/2NN distance ratio test). Visualize the results. Was the method successful?
- (8) Eliminate any remaining mismatches manually by visual inspection. Visualize the results.
- (9) Align the two images by a Least-Squares procedure using the pairwise correspondences as described in class. What is the unknown transformation model you used? (*Hint*: write

www.cba-research.com

- down the parametric model for first rescaling the image down by certain factor of s, then rotating it by 30 degrees in θ). Quantify the amount of error between the true transformation and the one you estimated by the LS procedure. Is it acceptable?
- (10) Transform the rescaled then rotated image back using the inverse of the transformation you estimated in step (9). Display your result side-by-side with the original image. Are the images aligned as they should be? Comment on any issues you observe.
- (11) How can you maket the whole procedure? Discuss.