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ABSTRACT 

We address the problem of prototypical waveform extraction 

from functional near infrared spectroscopy (fNIRS) signals in 

cognitive experiments. Extracted waveforms represent the 

brain hemodynamic response (BHR) to visual stimuli pro-

vided in an oddball type experimental protocol. We use and 

evaluate two statistical signal processing tools, namely inde-

pendent component analysis (ICA) and waveform clustering, 

in a comparative manner. Based on the conformance to a 

parametric BHR model, we determine that the ICA waveform 

extraction method is superior.  We measure and comment on 

the intra-subject and inter-subject waveform and parameter 

variability. 

1. INTRODUCTION 

Most neuroimaging studies involve single-event trial cogni-

tive or motor stimulation studies. They are invariably based 

on the blood oxygen level dependent (BOLD) signal, and 

the main instrument to analyze these signals has been func-

tional magnetic resonance imaging (fMRI). In the fMRI 

approach the signals have been decomposed into their rele-

vant components
 
[1, 2] and their parameters estimated with a 

view to quantify physiological responses and neurovascular 

coupling within brain [1-3]. 

An alternative to BOLD-fMRI signal is the hemoglobin 

(Hb) and the oxyhemoglobin (HbO2) signals captured via 

functional near infrared spectroscopy (fNIRS). fNIRS meas-

urements determine the concentrations of hemoglobin 

agents based on a modified version of the Beer-Lambert law 

[4]. A recent study has demonstrated that strong correlations 

exist between BOLD-fMRI data and diffuse optical HbO2 

data [5]. In other words, functional neuroimaging studies 

performed by both fMRI and fNIRS methods confirm that 

the increase of regional cerebral blood flow towards acti-

vated areas exceeds the regional oxygen consumption, and 

hence the signal pattern observed in the BOLD response 

resembles the HbO2 signal of fNIRS [4,5].   

In this paper, we propose a framework to process the event-

related fNIRS signals evoked during a target categorization 

task via hypothesis-driven data analysis methods. The data 

consist of time-series of the HbO2 signal samples that are 

obtained from optical absorption measurements. Our goal is 

to decompose these signals into their source components, 

conjectured to be consisting of: (i) cognitive activity related 

component, that is, the brain hemodynamic response; (ii) 

baseline physiological component; (iii) all other nuisance 

factors such as noise, movement artifacts and higher fre-

quency components. To these ends, we test two statistical 

signal-processing tools, namely independent component 

analysis (ICA) and waveform clustering as presented. Then 

we use a model-guided identification method for extracting 

the brain hemodynamic response, in that the identified 

sources are sorted with respect to their conformance to the 

so-called Gamma model waveform. Such a model-based 

approach has been proposed in fMRI studies, where time-

averaged BOLD responses have typically yielded a bell-

shaped curve skewed towards its falling side. These curves 

could conveniently be modeled by a Gaussian, Gamma, or 

Poisson function [1, 2]. These issues are addressed in Sec-

tion 2. In Section 3, we present the results of both ICA and 

waveform clustering approaches. In Section 4, we discuss 

our findings and draws conclusions for further research on 

fNIRS signal analysis.  

2. WAVEFORM EXTRACTION 

Most of the techniques to estimate and extract cognitive 

activity-related waveforms from evoked responses are based 

on coherent averaging. In this work, we intend to extract 

brain hemodynamic waveforms using two newly proposed 

non-parametric waveform estimation techniques, namely, 

independent component analysis and waveform clustering. 

We assume that the cognitive hemodynamic waveforms are 

embedded within a background activity, including respira-

tion and heartbeat artifacts as well. Furthermore, we assume 

that time span of the evoked BHR is approximately known 

so that we can operate on the computed HbO2 data from the 

inter-stimulus intervals. The measurements are multi-site in 

that they are taken from the prefrontal cortex using an array 

of sensors, and they are multi-session in that, repetitive 

stimuli and time-uncorrelated measurements are taken. The 

extracted waveforms from the two non-parametric methods 

(ICA and clustering) are validated based on the conformance 

to a known parametric waveform model, namely the 

Gamma model. In this sense, we follow an “informed” non-

parametric approach. 

 

 

 



2.1 Independent component analysis approach 

We assume that the short-time fNIRS signal can be pro-

jected onto a basis in which each direction stands for differ-

ent neurophysiological changes, such as background activ-

ity, cognitive responses, respiration and heartbeat artifacts, 

etc. Furthermore, we hypothesize that the components along 

the basis vectors, i.e., the contributions of each activity to 

the fNIRS signal, are statistically independent. The recorded 

data form a multivariate time-series since we record fNIRS 

signals from several channels (detectors on the frontal lobe) 

for the duration of the experiment that contains multiple 

trials. 

ICA uses higher-order statistical information to find a suit-

able basis in such a way that the statistical independence 

between the projections of the signal onto these basis vec-

tors is maximized [6]. In contrast, principal component 

analysis (PCA) uses only second-order statistics to separate 

a signal into uncorrelated components. We have observed 

that PCA falls short of extracting the brain hemodynamic 

response and hence we do not consider it in this work. Let x 

be an m-dimensional observation vector, [ ]( ) , 1,...,x i i m= =x , 

where each component represents one of the measured m-

time samples starting right after the presentation of a cogni-

tive stimulus or a target. A cognitive stimulus may be a spe-

cial visual pattern appearing on a screen, or a particular 

sound presented randomly or periodically. The observation 

vectors x can be obtained in time succession from a single 

detector, as the targets are presented, and/or from different 

detectors. These different sample vectors will be indexed by 

the subscript k and denoted as kx . In ICA, we find a linear 

transformation A, according to the generative model 

=x As , where the n columns of the matrix A constitute a 

basis spanning the observation vector space and where 

, 1,...,js j n = = s , are the vectors of coefficients. A coeffi-

cient sj quantifies the contribution of the j
th
 basis vector (j

th
 

column of A) to the observation vector x. Any two such co-

efficients ks  and ls  are assumed to be statistically “as inde-

pendent as possible”, for k l≠ . The matrix A is the m n×  

basis matrix. This decomposition operation must be effected 

based solely on the information given by the multivariate 

dataset { }
1

K

k k
X

=
= x  that consists of K realizations of the 

random vector x. These multiple realizations are obtained 

from different target presentation epochs on the same detec-

tor and/or from different detectors.  The columns of the ma-

trix A are said to form an ICA basis suitable for representing 

the multivariate observations. Rewriting the generative 

model as 
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the data vector x is expressed as a linear combination of the 

columns of A, where the weights js  are the independent 

components and the set { }
1

n

j j=
a  forms the basis vector set. 

Obviously, there will be K of the vectors k jks =  s , 

1,...,j n=  one for each measurement vector kx . The set of 

ICA basis vectors { }
1

n

j j=
a  correspond to, in our case, hope-

fully to cognitive activity related waveform, background 

activity and other artifacts. 

2.2 Clustering Approach 

We explored an alternative waveform extraction method, 

namely smoothing the fNIRS-HbO2 waveforms with B-

splines and then clustering the B-spline coefficients. The 

cluster centroids represent the most commonly occurring 

waveforms, among which we expect to find the cognitive 

response. 

Spline smoothing: The B-spline approximation is useful in 

putting into evidence the functional nature of the data and in 

eliminating irrelevant high-frequency noise [8]. It is also 

known to have superb summarizing property for the wave-

forms by just using a few coefficients. Thus we first com-

puted, for all m-component vectors kx  in a given dataset X, 

the corresponding B-spline approximation coefficients ky  

of dimensionality m m′ ≤ .  

Clustering: The B-spline feature set { }
1

K

k k
Y

=
= y  is input to a 

clustering algorithm. We form n-clusters Q { }
1

n

c c c
 Q

=
= q, , 

where cq  is the centroid of the cluster cQ  in order to explore 

the presence of cognitive response. We adopt an agglomera-

tive clustering approach
 
[7], where we start with singleton 

clusters, ky  (hence as many clusters as the K data points), 

and then group them to form the n clusters cQ . To avoid any 

confusion, we point out that both K’s (in ICA and waveform 

clustering) refer to the number of observation vectors (or 

realizations). In the waveform clustering approach, we pro-

ject an observation vector x (of dimension m) to a basis 

spanned by m′  B-splines to obtain its representation in terms 

of B-spline coefficients y (of dimension m’). For the distance 

metric, we use the one-minus-the-normalized correlation 

coefficient, which is defined by 

 ( ), 1 , . ,k l k l k ld = − 〈 〉y y y y y y  (2)   

and where the vectors ky , ly  are centered (zero-mean) and 

⋅  represents the Euclidean norm of a vector.  As for similar-

ity criterion, we adopt the average linkage criterion, such that 

the pair of clusters with minimum average distance between 

their elements is merged at each step till we reach the goal 

number of clusters. The dendrogram organization of the vec-

tors ky  is finally pruned in order to get the n-cluster set Q. It 

may turn out that none of the centroids resembles the model 

Gamma waveform. This can be due to the absence of any 

cognitive activity-related waveform or due to the weak evi-

dence submerged in heavy baseline activity. 



2.3 Model guided selection of waveforms 

Both the ICA algorithm and the waveform clustering ap-

proach outputs n waveforms, and there exists some ambigu-

ity as to which ones, if any, of these waveforms correspond 

to the cognitive activity.  This ambiguity can be resolved by 

considering the conformance of the waveforms to a brain 

hemodynamic response model. This has been the common 

practice in fMRI studies [1,2]. Note that ICA does not pro-

vide a natural ordering of the independent components [6], 

as for example PCA. Second, independent components can 

be estimated up to a sign [6], and to remedy it we allow for 

polarity reversals in estimated components. In waveform 

clustering approach, the centroid of the most populated clus-

ter does not automatically correspond to the brain hemody-

namic response, but instead it may be modeling some base-

line activity. In other words, a conformance-based selection 

is also necessary in the clustering approach. The response 

model is the Gamma function (see Figure 1) defined as  
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where τ  is the time-constant that characterizes the reaction 

duration, B is the strength parameter and T is the delay in 

responding to the target stimulus. Let h be the vector with i
th
 

component 1
s

h iT   i m=( ), , ..., , the periodic samples of the 

model waveform in (3). Any one of the identified compo-

nents (say, the l
th
 ICA basis vector or the l

th
 cluster centroid) 

[ ] 1
l l

a i i m= =a ( ) , , ...,  (for 1,...,l n=  in ICA or in wave-

form clustering), is qualified according to its matching de-

gree to the waveform in (2), after that the parameters B, T 

and τ  have been estimated. Given the l
th
 estimated vector 

la  (by ICA or waveform-clustering), the 
l l l
B T τ, ,  parame-

ters are estimated by a mean squared error procedure, i.e.,  

 { } [ ]2
1

m

l l l l
B ,T, i

B ,T , arg min a ( i ) h( i;B,T , )
τ

τ τ
=

= −∑  (4) 

so that we obtain ),,;()( llll TBihih τ= , i=1,…,m. Notice also 

that B is allowed to take negative values as well for ICA, in 

order to be able to account for the ambiguous sign of the 

ICA basis vectors, while for waveform clustering, there is no 

such need. We set an upper limit to the reaction delay T, that 

is ~2-3 secs, and similarly the time constant τ  is con-

strained to be in the range of (1, 4). This signifies that the 

elapsed time between the 10 percent rise and decay in-

stances of the BOLD signal have durations between ex-

tremes 6.5 to 25.9 seconds. Each of the estimated vectors 

la , ( 1,...,l n= ) is qualified as representative of the brain 

hemodynamic response based on its correlation with the 

model lh  whose parameters are estimated as in (4). The 

waveform with index l possessing the highest normalized 

correlation coefficient, provided this correlation is above a 

threshold, is declared as the cognitive activity related wave-

form. 

 

Figure 1  - Gamma model waveform, B=1/(τ3), T=0, τ=2, signal is 
mean-removed 

 

Figure 2 Source-detector configuration on the brain probe and no-
menclature of photodetectors 

3. EXPERIMENTAL RESULTS 

3.1 fNIRS data 

Data were collected at two different sites: MCP Hahnemann 

University - Eastern Pennsylvania Psychiatric Institute 

(EPPI); Drexel University and Biophotonics Laboratory, 

Bogazici University, Istanbul, Turkey. Both systems house a 

probe that contains four LED light sources each emitting at 

three near infrared wavelengths and twelve photodetectors. 

This setup, with the time and wavelength-multiplexing, ends 

up with four non-overlapping quadrants of photodetectors as 

depicted in Figure 2. In other words, the detectors (optodes) 

are grouped into quadrants according to their anatomic loca-

tion over the forehead. Each quadrant consists of 4 receiving 

optodes separated 2.5 cm from the source positioned in the 

middle of each quadrant. Hence in one scan of the forehead 

a total of sixteen measurements at each wavelength can be 

acquired totaling to 48 three-band optic signals.  

The source and detectors are equidistantly placed on the 

probe as seen in Figure 2. At the center of every quadrant, a 

photon source emits light at three different wavelengths, 

namely 730 nm, 805 nm and 850 nm. It is possible to com-

pute the Hb and HbO2 concentration changes based on 

modified Beer-Lambert Law explained elsewhere [4, 5].  

Task Procedure:  The procedure consists of simple discrimi-

nation task, or “oddball” paradigm, in which subjects are 

presented with two stimuli (target and non-target) in a Ber-

noulli sequence in the center of the screen. The participants 

are asked to press the left button of a mouse for non-targets 

and right button for the targets. Overall 1024 stimuli are 

presented 1500 ms apart (total time, 25 minutes); targets are  



 

Figure 3 A typical fNIRS-HbO2 signals (top), estimated trend (mid-

dle), and the signal after trend removal 

presented on 64 trials, that is, on the average once every 

sixteen trials. The target instances are jittered randomly, but 

such that a minimum of 12 context stimuli is guaranteed 

between any target presentations. Duration of stimuli is 500 

ms, hence there are blank intervals of one second. Recording 

is done at a sampling rate of 1.7 Hz.  

Preprocessing: The target categorization experiments have 

been carried out on twelve subjects. Since every subject is 

monitored via 16 measurements, one should end up with a 

total of 3×16 = 48 signal sequences (optical density signals) 

per subject. However, due to sensor defects (clipping, 

saturation, defects due to head movements), we did not take 

into account data from some of the detectors. There were no 

particular patterns of defective photodetectors. Each HbO2 

time-series consisted of approximately 2700 samples, corre-

sponding to 25-minutes duration of the cognitive task ex-

periment. These signals were detrended by simple moving 

average filtering, which effectively removed very low fre-

quency components below 0.003 Hz. The detrending filter 

(one minus a low-pass) is in fact a high-pass filter, which 

removes only the very low frequencies (Figure 3). Each tar-

get is expected, in principle, to trigger some HbO2 signal 

corresponding to cognitive activity, as depicted in Figure 1. 

Since our purpose in this study is the extraction of wave-

forms associated with cognitive activity, we focus on the 

fNIRS segments that consist of the m samples taken just 

after target stimuli onsets. In other words, we window out 

the m sample intervals after the presentation of a target 

stimulus, and there are 64 such windowed segments per de-

tector. 

3.2 ICA results 

As is typical of the ICA decomposition via FastICA algo-

rithm [6], we first reduce the dimensionality of the data via 

PCA. The reduced dimension n is selected based on the 

proportion of variance (PoV), set to 90 per cent for the 

fNIRS-HbO2 vectors, leading to n=4. This operation 

smoothes the data, removes the high frequency fluctuations, 

and fixes the maximum number of ICA basis vectors that can 

be estimated by FastICA algorithm. Four basis vectors seem 

plausible since one can expect one or two cognitive activity- 

 

Figure 4 The ICA basis vectors estimated from a quadrant of a given 

subject (CC: correlation coefficient, TAU: time-constant). 

related basis vector(s) and the remaining two or three to rep-

resent the baseline activity. To illustrate the case in point, 

let’s consider a single dataset, which consists of 256 vectors 

from mid-left photodetectors of a subject (4 detectors × 64 

target presentations = 256 fNIRS segments of 40 samples 

each). The FastICA algorithm is applied to these vectors to 

yield four basis vectors as shown in Figure 4, where solid 

curves correspond to the best fitted Gamma functions, and 

the thick bars mark the estimated delay T. Top left plot in 

Figure 4 corresponds to the basis vector that best fits the 

model function (with a correlation value of 0.90). Other basis 

vectors, in decreasing correlation order, are displayed in the 

remainder of Figure 4. Obviously the waveforms with low 

conformance to the Gamma function model do not appeal to 

our expectation of cognitive activity response, and hence 

they must somehow originate from the baseline activity.  In 

the context of waveform extraction from fNIRS signals, the 

performance of the ICA approach in the large can be quanti-

fied by the average correlation coefficient between the ex-

tracted waveform and the corresponding Gamma model. The 

average is taken subject-wise (i.e., over 12 people) on a per 

quadrant basis as shown in Table 1. The high correlation fig-

ures convince us for the capability of ICA in extracting cog-

nitive activity related waveforms from fNIRS-HbO2 signals. 

On the other hand, our visual investigation of the best fitting 

ICA basis vectors also proves to be compatible with the 

Gamma waveform model. Figure 5 displays all the subjects’ 

responses on an error-bar plot, each of which reflects the 

results for a given quadrant. It can be observed, as expected, 

that there can be significant variations among subjects. To 

summarize, ICA proves to be a viable scheme in extracting 

cognitive activity related waveforms, observed per detector 

group. It is also capable of providing signals in which a 

deeper understanding of the physiological processes can be 

investigated.  

3.3  Clustering results 

We approximate the m-sample fNIRS-HbO2 signals by m′  
B-spline coefficients. To this end, we implemented Unser’s 

algorithm [9] for cubic B-splines on regular grids. We have 

observed that setting 5m′ =  was satisfactory based on as-

sessment of the compromise between waveform smoothness 



Table 1 Average correlation coefficients (CC) between best-fitting 
ICA basis vectors and the corresponding Gamma model 

Quadrant Left Mid-Left Mid-Right Right 

Avg. CC 
0.90  
± 0.07 

0.90  
± 0.05 

0.88  
± 0.06 

0.87 
 ± 0.05 

 

 

Figure 5 Error bar plot for best-fitting ICA basis vectors shown 

quadrant-by-quadrant 

 

and preservation of the essential shape. To choose the num-

ber of n clusters we consider a criterion that minimizes the 

ratio of within-cluster scatter and maximizes between-

cluster scatter
 
with a penalty term to bound the number of 

clusters. We have found that the choice of five clusters (n = 

5) is suitable for our purposes. The correlation scores ob-

tained from the clustering approach are lower as compared 

to those in the ICA approach (Table 2). In terms of confor-

mance to Gamma model, the waveforms found by cluster-

ing, shown in Figure 6, are somewhat less plausible. 

4. DISCUSSION AND CONCLUSION 

With the goal of identifying the brain hemodynamic re-

sponse waveform to a single cognitive stimulus obtained by 

fNIRS, we explored two non-parametric methods, namely, 

independent component analysis and waveform clustering. 

Since both methods are exploratory, their outcomes were 

benchmarked against a model waveform, the so-called 

Gamma waveform with time-constant parameter τ. 
Our first conclusion is that, waveforms estimated by ICA 

were found to be plausibly related to cognitive activity, 

based on their conformance to the Gamma function model.  

The other components of ICA could possibly be used to 

model the baseline interference. Our second conclusion was 

that there exists considerable variability of waveforms both 

within a subject and among subjects. This intra- and inter-

subject variability of waveforms has also been observed by 

related studies in the literature.  

Our work on fNIRS signal analysis continues with data col-

lected from a larger set of subjects and on new protocols that 

include lie experiments, emotional data, Stroop tests and 

arithmetic tests. 

 

Table 2 Average correlation coefficients (CC) between best-fitting 
waveforms by clustering and the corresponding Gamma model 

Quadrant Left Mid-Left Mid-Right Right 

Avg. CC 
0.83  
± 0.09 

0.83  
± 0.08 

0.79 
 ± 0.08 

0.84  
± 0.09 

 

Figure 6 Error bar plot for best-fitting waveforms by clustering 

shown quadrant-by-quadrant 
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