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3DOR: Applications3DOR: Applications

Video Games
Medicine

Product Design

3D data and objects are everywhere!

Engineering

Car Industry

Cultural Heritage

3D data and objects are everywhere!
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How to organize a 3D database?
How to look for an item in a 3D database?

3DOR: Applications3DOR: Applications

Video Games
Medicine

Product Design

How to look for an item in a 3D database?

Engineering

Car Industry

Cultural Heritage
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3DOR: Why?3DOR: Why?

Text-based search and manual annotation have limitations:

= “amphora with two handles”

?= ?

How many items can one annotate unambiguously?
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3DOR: Why?3DOR: Why?

Text-based search and manual annotation have limitations:

= “amphora with two handles”

?= ?

Search and retrieve by content similaritySearch and retrieve by content similarity

How many items can one annotate unambiguously?
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3DOR: What is a 3D object?3DOR: What is a 3D object?

� Completely given in 3D space

� No perspective distortion

� No clutter, no occlusion

� Single object in an empty background

3D Object   =   A Mesh in 3D

• Arbitrary resolution

high low

• Arbitrary resolution

• Arbitrary pose and scaleBUT!BUT!

Add to these small shape variations which don’t alter semantics

• High variability
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3DOR: Main Research Problems3DOR: Main Research Problems

• Intrinsic shape characteristics
• Robustness
• Fast computation
• Low storage cost
• Geometric invariance
• High discrimination ability

1 Content Description for 3D Shapes1 Content Description for 3D Shapes

Shape Space
Descriptor Space
Descriptor = High-dim vector

1

N

x

x

 
 =  
  

x ⋮

?
• High discrimination ability

N
x  ?

• Similarity models for retrieval
• Statistical learning

• Optimization criteria

• Limited supervision
• Small training set

• Search paradigms
• Relevance feedback

2 Similarity Learning for CBR2 Similarity Learning for CBR
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Shape DescriptionShape Description



3DOR: 3DOR: ShapeShape DescriptionDescription

3D Shape Descriptors3D Shape Descriptors

Histogram-Based

• Cord and Angle Hist (CAH)

• Shape Distributions (SD)

• Generalized Shape Distr. (GSD)

• Shape Histograms (SECSHELL)

• Extended Gaussian Images (EGI)

• Shape Spectrum Desc. (SSD)

Transform-Based

• VOXEL-3DFT

• Radial Cosine Transform

• Angular Radial (ART)  

• Spherical Harmonics (SH)

o Rotation Inv. SH (RiSH)

o REXT SH

• Spherical Wavelet (SW)

2D “Image”-Based

• Light Field Images (LFD)

• Depth Buffer Images (DBI)

• Silhouette (SIL)

• Shape Spectrum Desc. (SSD)

• 3D Hough Transform (3DHT)

• Spherical Wavelet (SW)

• Concrete Radialized 

Spherical Projection (CRSP) 
Others

• Graph-Based

o Reeb Graphs

• Moments-Based

o Zernike Moments

• Spin Images

• Symmetry Descriptors
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3DOR: 3DOR: ShapeShape DescriptionDescription

3D Shape Descriptors3D Shape Descriptors

Histogram-Based

• Cord and Angle Hist (CAH)

• Shape Distributions (SD)

• Generalized Shape Distr. (GSD)

• Shape Histograms (SECSHELL)

• Extended Gaussian Images (EGI)

• Shape Spectrum Desc. (SSD)

Transform-Based

• VOXEL-3DFT

• Radial Cosine Transform

• Angular Radial (ART)  

• Spherical Harmonics (SH)

o Rotation Inv. SH (RiSH)

o REXT SH

• Spherical Wavelet (SW)

2D “Image”-Based

• Light Field Images (LFD)

• Depth Buffer Images (DBI)

• Silhouette (SIL)

• Shape Spectrum Desc. (SSD)

• 3D Hough Transform (3DHT)

• Spherical Wavelet (SW)

• Concrete Radialized 

Spherical Projection (CRSP) 
Others

• Graph-Based

o Reeb Graphs

• Moments-Based

o Zernike Moments

• Spin Images

• Symmetry Descriptors

oo Unifying frameworkUnifying framework

oo A multivariate extensionA multivariate extension

oo Kernel Density Estimation (KDE) = Parzen windowsKernel Density Estimation (KDE) = Parzen windows

• smoother than histogram

• less sensitive to feature measurement errors than histogram

DensityDensity--Based Framework (DBF)Based Framework (DBF)
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: OverviewDBF: Overview

Normalize

Sample 

3D points

Compute

features

• 3D coordinates

• Tangent plane{ }ksEstimate pdf by

11 22 33

Tangent plane

• Curvature related

{ }ksEstimate pdf by

Kernel Density EstimationKernel Density Estimation

Global 3D shape descriptor

Multivariate
local characterization( ) 

 
 

∑
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k

f C expt H t s
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: RobustnessDBF: Robustness

� Insensitive to small shape variations & errors
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: RobustnessDBF: Robustness
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: RobustnessDBF: Robustness

� Insensitive to small shape variations & errors
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: Descriptor ComputationDBF: Descriptor Computation

� Fast computation: less than 1 sec per 3D object on average
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: DBF: Geometric Geometric InvarianceInvariance

1. Invariance by feature design: might loose shape information

2. Invariance by pre-normalization: not always stable

� Correspondence-free shape alignment

2. Invariance by pre-normalization: not always stable

3. Invariance at matching
� Evaluate the similarity under all possible transformations 

and take the minimum

� Costly if descriptor should be computed for every possible

transformation
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: DBF: Geometric Geometric InvarianceInvariance

� Correspondence-free shape alignment

The complexity of invariant matching is 48 times the complexity

of vector-to-vector distance computation. 
21



3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: DBF: Geometric Geometric InvarianceInvariance

In DBF, for certain class of transformations, 

there is no need to recompute the descriptor:

���� Just permute the vector entries!

� Correspondence-free shape alignment

���� Just permute the vector entries!
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: DBF: Geometric Geometric InvarianceInvariance
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: DBF: Geometric Geometric InvarianceInvariance

In DBF, for certain class of transformations, 

there is no need to recompute the descriptor:

���� Just permute the vector entries!

� Correspondence-free shape alignment

���� Just permute the vector entries!

The target set should be closed under the action of the transformation24



3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: Retrieval PerformanceDBF: Retrieval Performance

Top 3D Shape DescriptorsTop 3D Shape Descriptors

� Highly discriminative
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3DOR: 3DOR: ShapeShape DescriptionDescription

DBF: Retrieval PerformanceDBF: Retrieval Performance

General Museum SHREC’07 Machine parts

� Highly discriminative

Princeton Sculpteur Watertight ESB

DBF 65.9% 78.3% 86.7% 75.7%

DSR 66.5% 76.6% 83.2% 74.1%

DSR: Hybrid descriptor proposed in D. Vranic’s PhD Thesis, 2004.

NOTE: Displayed are % DCG values, one of the most popular retrieval statistics.
26
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3DOR: Similarity Learning3DOR: Similarity Learning

Score Fusion: OverviewScore Fusion: Overview

1sim x,q( )

( )2sim x,q

1 1w s

2 2w s
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Similarity Score Similarity Score 
ComputationComputation Weighted Weighted 

ScoresScores

Final Final 
Similarity ScoreSimilarity Score
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( )Ksim x,q

Σ

K Kw s

ϕ ∑
=1

( )
K

K K

k

x,q = w sQueryQuery
q

{ }
=1

K

k k
w Weights?{ }

=1

K

k k
s

Similarity scores 
from different 
descriptors ! 28



3DOR: Similarity Learning3DOR: Similarity Learning

Score Fusion: ContributionsScore Fusion: Contributions

� Linear similarity model: intuitively appealing

� Original: Ranking Risk Minimization
- no prior work in visual retrieval domain- no prior work in visual retrieval domain

� Flexible: can be applied to broader CBR domains

� Fast computation and convergence

� ~10% performance increase using relevance feedback
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3DOR: Similarity Learning3DOR: Similarity Learning

Score Fusion: ApproachScore Fusion: Approach

Estimation of the optimal set of weightsEstimation of the optimal set of weights

1. What kind of criterion to optimize?

� Empirical Ranking Risk (ERR)

� Given a query, relevant entities should be ranked � Given a query, relevant entities should be ranked 

higher than less relevant and/or not-relevant ones

� ERR is the count of misordered pairs of entities

2. How to incorporate supervision?

� Ontology-driven search

� Relevance feedback
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3DOR: Similarity Learning3DOR: Similarity Learning

Score Fusion: Empirical Ranking RiskScore Fusion: Empirical Ranking Risk

Pairs Ranking

(1,2) Don’t careDon’t care(1,2) Don’t careDon’t care

(1,3) Don’t careDon’t care

(1,4) ��������

...

(4,6) �

...

(5,6) �

...

Number of misrankings = 2

Minimize the number of such errorsMinimize the number of such errors

to learn the optimal set of weightsto learn the optimal set of weights

DesideratumDesideratum
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3DOR: Similarity Learning3DOR: Similarity Learning

Score Fusion: Ranking Risk MinimizationScore Fusion: Ranking Risk Minimization

ϕ =∑( ) = should satisfy :k kk
x,q w s  ,Similarity function w s

ϕ ϕ
ϕ ϕ
( ) ( )    if  is more relevant to  than 

( ) ( )    otherwise.

x,q > x',q x q x',

x,q < x',q

Let encode the relevance of  to : y x q





+1   if  is relevant to ,

- 1   if not.

x q
y =

Then, we can write :

>     if > 0

<     if < 0.

, , y - y' ,

, , y - y'

w s w s'

w s w s'

> 0    if > 0

< 0    if < 0.

, y - y' ,

, y - y'

w s-s'

w s -s'
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3DOR: Similarity Learning3DOR: Similarity Learning

Score Fusion: Ranking Risk MinimizationScore Fusion: Ranking Risk Minimization

Let and , t( hen:)   z sign y - '  y≜ ≜v s - s' 

> 0    if > 0

< 0    if < 0.

, y -y' ,

, y - y'

w s-s'

w s -s'

> 0    if +1

< 0    if -1.

, z = ,

, z =

w v

w v< 0    if < 0., y -y'w s-s' < 0    if -1., z =w v

Binary Binary 
classificationclassification

� The original problem is transformed into one of 

binary classification

� Any binary classifier can be used. 

� Use Support Vector Machines (SVM)Support Vector Machines (SVM)
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3DOR: Similarity Learning3DOR: Similarity Learning

Score Fusion: Retrieval ProtocolsScore Fusion: Retrieval Protocols

1.1. BimodalBimodal

� Query: shape + concept keyword

� Offline learning of concept-specific weights

� Concepts � Ontologies

2.2. TwoTwo--RoundRound

� User is active: Relevance feedback

� Online or offline learning of query-specific weights
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3DOR: Similarity Learning3DOR: Similarity Learning

Retrieval Protocols: BimodalRetrieval Protocols: Bimodal

Query 
q

Database Shapes Database Shapes 
xxtt

q

ts

vasew

ϕ( ) ,t vase tx ,q = w s

Final Similarity Score
SimilaritySimilarity

ComputationComputation

“Per“Per--concept”concept”
weights weights 

learned off-line

“vase”

+

Concept
keyword
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3DOR: Similarity Learning3DOR: Similarity Learning

Retrieval Protocols: TwoRetrieval Protocols: Two--Round OnRound On--lineline

Query 
q

SimilaritySimilarity
ComputationComputation

Database Shapes Database Shapes 
xxtt

ts

SUMSUM
1st Round 
Similarity

ComputationComputation
ϕ =∑1 k

k

s

OnOn--lineline
LearningLearning

q,onw

ϕ( ) ,t q,on tx ,q = w s

Final Similarity Score

ts
User marks M items
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3DOR: Similarity Learning3DOR: Similarity Learning

Retrieval Protocols: TwoRetrieval Protocols: Two--Round OffRound Off--lineline

Query 
q

SimilaritySimilarity
ComputationComputation

Database Shapes Database Shapes 
xxtt

ts

SUMSUM
1st Round 
Similarity

ϕ( ) ,t off tx ,q = w s

Final Similarity Score

ts

“Per“Per--shape”shape”
weightsweights

q,offw

learned off-line

User marks 
the first relevant 

item

ComputationComputation
SUMSUM

ϕ =∑1 k

k

s
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3DOR: Similarity Learning3DOR: Similarity Learning

TwoTwo--Round OnRound On--line Example: “Human”line Example: “Human”

User marks 4 User marks 4 relevantrelevant and 4 and 4 nonnon--relevantrelevant models among the first 8models among the first 8
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3DOR: Similarity Learning3DOR: Similarity Learning

TwoTwo--Round OnRound On--line Example: “Human”line Example: “Human”

All the retrieved models are relevant after the second roundAll the retrieved models are relevant after the second round
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3DOR: Similarity Learning3DOR: Similarity Learning

TwoTwo--Round OnRound On--line Example: “Couch”line Example: “Couch”

User marks 1 User marks 1 relevantrelevant and 7 and 7 nonnon--relevantrelevant models among the first 8models among the first 8

40



3DOR: Similarity Learning3DOR: Similarity Learning

TwoTwo--Round OnRound On--line Example: “Couch”line Example: “Couch”

5 models are5 models are relevantrelevant after the second roundafter the second round
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3DOR: Similarity Learning3DOR: Similarity Learning

TwoTwo--Round OnRound On--line: Convergenceline: Convergence

DCGDCG = 68% (+6%) = 68% (+6%) 

DCGDCG = 70% (+8%) = 70% (+8%) 
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3DOR: Similarity Learning3DOR: Similarity Learning

Score Fusion: Performance SummaryScore Fusion: Performance Summary

Two-Round 

On-line (M=8)

Two-Round 

On-line (M=12)

Two-Round 

Offline
Bimodal

Additive DCG Gain in all Protocols (%)Additive DCG Gain in all Protocols (%)

6.0 8.0 5.0 2.0-4.0

ReminderReminder

Performance of top descriptors differ only by 1-2 %.

ObservationObservation

Bimodal: Harder task than Two-Round
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