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3DOR: Applications

Video Games Medicine Product Design

3D data and objects are everywhere!

Engineering Cultural Heritage

Car Industry @




3DOR: Applications

Video Games Medicine Product Design

How to organize a 3D database?
How to look for an item in a 3D database?

Engineering Cultural Heritage

Car Industry @




3DOR: Why?
Text-based search and manual annotation have limitations:

@ = “amphora with two handles”

How many items can one annotate unambiguously?



3DOR: Why?

Text-based search and manual annotation have limitations:

@ = “amphora with two handles”

———

How many items can one annotate unambiguously?

Search and retrieve by content similarity
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3DOR: What is a 3D object?
v No perspective distortion

v' Completely given in 3D space
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v No clutter, no occlusion
v" Single object in an empty background
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3D Object = A Meshin
« Arbitrary resolution ) |
BUTl  Arbitrary pose and scale - * *

« High variability s

Add to these small shape variations which don’t alter semantics’



3DOR: Main Research Problems

Descriptor Space
Shape Space Descriptor = High-dim vector







3DOR: Shape Description
- 3D Shape Descriptors

Transform-Based

HiStogram'Based « VOXEL-3DFT
 Cord and Angle Hist (CAH) « Radial Cosine Transform 2D “Image”-Based
« Shape Distributions (SD) « Angular Radial (ART) . Licht Field I- LFD
» Generalized Shape Distr. (GSD) « Spherical Harmonics (SH) . D]egpth éiffe?ﬁﬁggés (DI)SI)
 Shape Histograms (SECSHELL) o Rotation Inv. SH (RiSH) . Silhouette (SIL)
» Extended Gaussian Images (EGI) o REXT SH
» Shape Spectrum Desc. (SSD) « Spherical Wavelet (SW)
3D Hough Transform (3DHT) « Concrete Radialized Others
Spherical Projection (CRSP)

» Graph-Based
o Reeb Graphs
» Moments-Based
o Zernike Moments
 Spin Images
» Symmetry Descriptors
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3DOR: Shape Description
- 3D Shape Descriptors

Transform-Based

HiStogram'Based « VOXEL-3DFT
 Cord and Angle Hist (CAH) « Radial Cosine Transform 2D “Image”-Based
« Shape Distributions (SD) « Angular Radial (ART) . Licht Field I- LFD
» Generalized Shape Distr. (GSD) « Spherical Harmonics (SH) . D]egpth éiffe?ﬁﬁgge(s (DI;I)
 Shape Histograms (SECSHELL) o Rotation Inv. SH (RiSH) . Silhouette (SIL)
» Extended Gaussian Images (EGI) o REXT SH
» Shape Spectrum Desc. (SSD) « Spherical Wavelet (SW)
3D Hough Transform (3DHT) « Concrete Radialized Others
Spherical Projection (CRSP)

» Graph-Based
o Reeb Graphs
» Moments-Based

o Zernike Moments
 Spin Images

» Symmetry Descriptors

o Unifying framework
o A multivariate extension

o Kernel Density Estimation (KDE) = Parzen windows
« smoother than histogram
« less sensitive to feature measurement errors than histogram 1



3DOR: Shape Description

Normallze

Sample - Compute
3D pomts ~features

* 3D coordinates

{Sk} « Tangent plane
e Curvature related

Estimate pdf by
Kernel Density Estimation

Multivariate

t)= Czk:exp (%HW (t,- sk)sz local characterization

H :Smoothing parameter

f=[fit) - ft,) - fit,)]
Global 3D shape descriptor
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3DOR: Shape Description

v Insensitive to small shape variations & errors

Feature Space

3D Surface
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3DOR: Shape Description
- DBF:Robustness

v Insensitive to small shape variations & errors

Feature Space

1.Place a grid on the feature space:

N
Choose the targets @ (pdf evaluation points) {t,, }n i

3D Surface
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3DOR: Shape Description
- DBF:Robustness

v Insensitive to small shape variations & errors

Feature Space

llli ldtllhli
s 1.;*1--‘1'-'

A R TETET

1.Place a grid on the feature space:
Choose the targets @ (pdf evaluation points) {t,,}

%00
- o

N
=1

2. Calculate the features on the surface points: n
3D Surface Obtain the sources @ (feature observations) {5;{ },E_,
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3DOR: Shape Description
- DBF:Robustness

v Insensitive to small shape variations & errors

3D Surface

ERRORS
= Scaling
» Rotation
« Translation
» Moise
+ Small shape variation

» Mesh degeneracy

%

Feature Space

L] | L L ]
1“ f
* f

1.Place a grid on the feature space:
Choose the targets @ (pdf evaluation points) {t }

2. Calculate the features on the surface points: n
Obtain the sources @ (feature observations) {5;{ }h,

We can use the histogram as the pdf estimate, but...
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3DOR: Shape Description

v Insensitive to small shape variations & errors

Feature Space

1.Place a grid on the feature space:
Choose the targets @ (pdf evaluation points) {t }

2. Calculate the features on the surface points: n
3D Surface Obtain the sources @ (feature observations) {5;{ },E_,

3. Estimate the pdf by Kernel Density Estimation (KDE):

Copes with measurement uncertainties
Soft assignment strategy

Insensitive to the placement of the grid
Smoother than the histogram

17



3DOR: Shape Description
- DBF:Robustness

v Insensitive to small shape variations & errors

Feature Space

1.Place a grid on the feature space:
Choose the targets @ (pdf evaluation points) {t }

2. Calculate the features on the surface points: n
3D Surface Obtain the sources @ (feature observations) {5;{ },E_,

3. Estimate the pdf by Kernel Density Estimation (KDE):

f(t,)= iw“ HI' £ (H(t, - 50))

Density-Based Descriptor— | f(t,), f(t;),..., f(ty)]
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3DOR: Shape Description
- DBF: Descriptor Computation

v Fast computation: less than 1 sec per 3D object on average

K
f(tn) = > wie|HITHK (HH(tn — s1))
k=1

@ Direct Evaluation — O(KN)

@ When the kernel K is Gaussian — O(K + N)
Fast Gauss Transform (FGT)
|Greengard and Strain, 1991; Yang et al., 2003]

K = 130000 and N = 1024

@ Direct — 125 secs
o FGT — 2.5 secs
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3DOR: Shape Description

DBF: Geometric Invariance
v Correspondence-free shape alignment

1. Invariance by feature design: might loose shape information
2. Invariance by pre-normalization: not always stable

3. Invariance at matching
— Evaluate the similarity under all possible transformations
and take the minimum
X Costly if descriptor should be computed for every possible
transformation

20



3DOR: Shape Description

v Correspondence-free shape alighnhment

31 = 6 axis relabelings
23 = 8 polarity assignments
= 6 x 8 = 48 axis configurations

The complexity of invariant matching is 48 times the complexity

of vector-to-vector distance computation. )



3DOR: Shape Description

DBF: Geometric Invariance
v Correspondence-free shape alignment

In DBF, for certain class of transformations,
there is no need to recompute the descriptor:

- Just permute the vector entries!

22



3DOR: Shape Description

DBF: Geometric Invariance
v Correspondence-free shape alignment

In DBF, for certain class of transformations,
there is no need to recompute the descriptor:

- Just permute the vector entries!

t Reflection
1 (x-axis)

L=

23



3DOR: Shape Description

DBF: Geometric Invariance
v Correspondence-free shape alignment

In DBF, for certain class of transformations,
there is no need to recompute the descriptor:

- Just permute the vector entries!

t Reflection t =
1 (x-axis) e

The target set should be closed under the action of the transformation



3DOR: Shape Description

DBF: Retrieval Performance
v' Highly discriminative

80 T T T T T T
‘ Top 3D Shape Descriptors
- = ~ DBF: Density-Based Framework
70+ / \ 1 CRSP: Concrete Radialized Spherical Projection
CRSP DSR: Hybrid DBI-SIL-REXT
( DSR 6, DBF' LFD: Light-Field Descriptor
SWD O \ LED® DBI: Depth-Buffer Images
\‘Q\ SIL: Silhouette
g SIL REXT: Radialized Extent Function
¢ 60 6REXT -+ SWD: Spherical Wavelet Descriptor
O RISH6 RISH: Rotation-Invariant Spherical Harmonics
Q 3DHT 3DHT: 3D Hough Transform
_ ; SHIST: Shape Histograms
SHIST / Histogram GSD: Generalized Shape Distributions
GSD O Transform EGI: Extended Gaussian Images
50 g 1 D2: Shape Distributions
EGI V ® 2D View CAH: Cord and Angle Histograms
o,V X  DSR (Hybrid)
O DBF
CAH
40 1 1 1 1 1 1 1 L
30 40 50 60 70 80 90 100 75

NN (%)



3DOR: Shape Description

DBF: Retrieval Performance
v Highly discriminative

General Museum SHREC’07 Machine parts
'd A N\ 'd A 'd A N\
Princeton | Sculpteur | Watertight ESB
DBF 65.9% 78.3% 86.7% 75.7%
DSR 66.5% 76.6% 83.2% 74.1%

k DSR: Hybrid descriptor proposed in D. Vranic’s PhD Thesis, 2004.

NOTE: Displayed are % DCG values, one of the most popular retrieval statistits.






3DOR: Similarity Learning

Score Fusion: Overview

Similarity Score
Computation Weighted
i WiS4 Scores
»[sim;(X,q)
Final
»{ sim,(x,q) W,S, Similarity Score
) 4 K
Query _ : : : _
q : : : Z (D(X) q) - W,S .
1 k=
- W, S
»[sim, (X, q) =

k  Similarity scores
{S k }k=1 from different
descriptors !

{wk}f=1 Weights?
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3DOR: Similarity Learning

Score Fusion: Contributions

v’ Linear similarity model: intuitively appealing

v Original: Ranking Risk Minimization
- no prior work in visual retrieval domain

v’ Flexible: can be applied to broader CBR domains
v Fast computation and convergence

v ~10% performance increase using relevance feedback
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3DOR: Similarity Learning

Score Fusion: Approach

Estimation of the optimal set of weights
1. What kind of criterion to optimize?
d Empirical Ranking Risk (ERR)

% Given a query, relevant entities should be ranked
higher than less relevant and/or not-relevant ones

% ERRis the count of misordered pairs of entities

2. How to incorporate supervision?
[ Ontology-driven search
O Relevance feedback
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3DOR: Similarity Learning

1 2 3

“ - I II ‘ -
6 7

- J:"— .‘.‘:jll_ ‘T;:I =

(1,4) v Number of misrankings = 2

Pairs | Ranking
(1,2) |Don’t care

(1,3) |Don’t care

(;g) v Desideratum
: Minimize the number of such errors
(5,6) x to learn the optimal set of weights
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3DOR: Similarity Learning

Score Fusion: Ranking Risk Minimization

Similarity function ¢(x,q) = > w,s, =(w,s) should satisfy :

o(X,q) > p(x,q) if x ismorerelevant to g than x/,

o(X,q) < p(x,q) otherwise.

Let v encode the relevance of x to g

_ |+1 if xisrelevant to q,
-1 if not.

'hen, we can write:

(w,s)>(w,s") ify-y'>0, (w,s-s")>0 ify-y'>0,
(w,s)<(w,s") ify-y'<0. ‘ (w,s-s")<0 ify-y'50.




3DOR: Similarity Learning

Score Fusion: Ranking Risk Minimization

Let z = sign(y-vy') and v=s-s', then:

(w,s-s)>0 ify-y'>0, (w,v)>0 if z=+1,
l<w,s-s'><0 if y-y'<0. I (w,v)<0 ifz=-1.

Binary
classification

% The original problem is transformed into one of
binary classification

- Any binary classifier can be used.
% Use Support Vector Machines (SVM)
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3DOR: Similarity Learning

Score Fusion: Retrieval Protocols

1. Bimodal

** Query: shape + concept keyword
% Offline learning of concept-specific weights
% Concepts © Ontologies

2. Two-Round

«» User is active: Relevance feedback
“* Online or offline learning of query-specific weights

34



3DOR: Similarity Learning

Retrieval Protocols: Bimodal

Database Shapes
Xt
Query
q
| S Final Similarity Score
Similarity B
@ Computation > (D(Xt, CI) - <anse’ St>
+

W

vase
“Per-concept’

(14 »
vase” ——y :
weights I

Concept
keyword learned off-line
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3DOR: Similarity Learning

Retrieval Protocols: Two-Round On-line

Database Shapes
Xt

q S
. J“L t 15t Round
— | Similarity SUM Similarity
Computation
" b = ZSk
k
.

D User marks M items
Final Similarity Score W,

(D(Xt)q) = <Wq,on’st> < On-l"?e 36
Learning

Query




3DOR: Similarity Learning

Retrieval Protocols: Two-Round Off-line

Database Shapes
X
Query :
7 L
. — 15t Round
— | Similarity SUM Similarity
Computation

SR ALY

User marks
the first relevant
1 imilari item
Final Similarity Score W Q

(D(Xt , q) = <Woff : St > « “per-.shape’, .
weights | learned off-line




3DOR: Similarity Learning

FIRST ROUND

HUMAN

L
..

User marks 4 relevant and 4 non-relevant models among the first 8
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3DOR: Similarity Learning

SECOND ROUND
un-lina learning muda

HUMAN

All the retrieved models are relevant after the second round
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3DOR: Similarity Learning

FIRST ROUND

User marks 1 relevant and 7 non-relevant models among the first 8
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3DOR: Similarity Learning

SECOND ROUND
on- Ime learning mode

COUCH

5 models are relevant after the second round
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3DOR: Similarity Learning
- Two-Round On-line: Convergence

Best Possible DCG after the Second-Round
78 | : ‘ :
74+
) :
S :
O
G 70} » DCG = 70/ (+8/)
| ' DCG 68/ (+6/) |

4 @16 20 24 28 32
The number of Marked Items M
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3DOR: Similarity Learning

Score Fusion: Performance Summary

Additive DCG Gain in all Protocols (%)

Two-Round Two-Round Two-Round ,
) i . Bimodal
On-line (M=8) | On-line (M=12) Offline
6.0 8.0 5.0 2.0-4.0
Reminder

Performance of top descriptors differ only by 1-2 %.

Observation
Bimodal: Harder task than Two-Round
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