


in this paper, fall under the category of histogram-based
methods. Historically, the first such descriptors are Paquet
and Rioux’s univariate cord and angle histograms (CAH)
[17] that are basically accumulators of radial distances and
angles (with respect to a reference frame). In the shape
distributions (SD) approach [16], Osada et al. have intro-
duced the concept of a shape function, which is a scalar
geometrical quantity computed via random sampling of the
3D surface. The collection of shape functions proposed in
[16] includes surface point-to-fixed point distance (D1), sur-
face point-to-surface point (D2) distance, area of the tri-
angle formed by three surface points (D3), etc. Despite
their simplicity and intuitive appeal, both CAH and SD
fall short in providing fine grain discrimination for content-
based retrieval. The poor retrieval performance of these ap-
proaches has been usually attributed to their global nature.
The more recent generalized shape distributions (GSD) [15]
have addressed this difficulty by a “3D” histogram where
two dimensions account for local and global shape signa-
tures and one for distances between local shape pairs. How-
ever, the improvement that GSD has provided was not suf-
ficient to lift the histogram methodology to the discrimina-
tion level of its competitors. The shape histograms (SEC-
SHELL) of Ankerst et al. [3], on the other hand, are con-
structed by accumulating the surface points in the bins (in
the form of shells, sectors, or both) based on a nearest
neighbor rule, providing better discrimination than the for-
mer ones. There also exists other count-and-accumulate
type of schemes where the histogram aspect is less empha-
sized. Extended Gaussian images (EGI) [11] and 3D Hough
Transform (3DHT) [25] are two such descriptors. While
the former relies on mapping the surface normals onto a
unit sphere, the latter is an accumulator of the local tan-
gent plane parameters and can be viewed as a generalized
version of EGI. Actually, the 3DHT descriptor is simple to
implement and effective for retrieval [25].

The density-based framework provides a statistical and
analytical formalism to the histogram-based methods for
3D shape description [1, 2]. The density-based setting, in
principle, can accommodate local features of any dimen-
sion. The concomitant increase in computational complex-
ity can be managed with the use of fast approximation algo-
rithms such as the fast Gauss transform [24]. The ability of
the density-based framework to process multivariate local
surface information not only promotes it to the top rank in
the league of histogram-based schemes [1], but also makes
it a strong competitor to other state-of-the art methods.

In the present work, we provide experimental evidence
for the above claim. It has been reported that global spher-
ical harmonics descriptor (GSHD) [12] and radialized ex-
tent function (REXT) [22] yield the best retrieval perfor-
mances among purely 3D shape description schemes [19].
As exemplified in Section 4, multivariate density-based de-

scriptors exhibit better discrimination than both of these two
methods.

Apart from purely 3D and vector-based shape descrip-
tion paradigms [1, 2, 3, 11, 12, 15, 16, 17, 22, 25], there
also exist others that rely on effective representations of 2D
projections of 3D objects or on matching by feature cor-
respondences. Interestingly, the 2D methods, namely, the
light field descriptor (LFD) [5] and depth buffer images
(DBI) [4] achieve better discrimination than any known 3D
method at the cost of increased descriptor extraction time
and storage size. Even more impressive retrieval perfor-
mances have been reported using Funkhouser and Shilane’s
priority-driven search (PDS) method [8], which belongs to
the paradigm of matching by feature correspondences. We
cite this highly discriminating methodology for complete-
ness, even if it relies on a philosophy that is completely
different from the 3D descriptor approach. In Section 4.4,
we list the retrieval performances of a selected group of
the above-mentioned shape matching schemes to give the
reader an idea about the performance landscape in content-
based 3D model retrieval research.

3 Description Framework

A density-based descriptor of a 3D shape is defined as
the sampled pdf of some surface feature, such as radial
distance or direction. The feature is local to the surface
patch and treated as a random variable. At each surface
point, e.g., at each mesh vertex and/or triangle, one has
a realization of this random variable. To set the notation,
let S be a random variable taking values within a sub-
space RS of R

m and let f(s|Ot) be the pdf of S evalu-
ated on the surface of the object Ot. In the sequel, ran-
dom variables appear as uppercase letters while their spe-
cific instances as lowercase. Suppose furthermore that we
have specified a finite set of points within RS , denoted as
RS = {sn ∈ RS : n = 1, . . . , N}, called the target set.
The density-based descriptor fS|Ot

for the object Ot (with
respect to the feature S) is then simply an N -dimensional
vector whose entries consist of the pdf samples at the target
set, that is, fS|Ot

= [f(s1|Ot), . . . , f(sN |Ot)].
Density-based shape description consists of three stages.

First, in the design problem, one chooses good local features
that accumulate to global shape descriptors. Good features
are computationally feasible and discriminating. Second,
one should address the computational problem, in search
of an efficient computational scheme to estimate f(s|Ot) at
designated targets s ∈ RS . In [1, 2], we have used the ker-
nel approach coupled with a fast algorithm, the fast Gauss
Transform (FGT) [24]. Finally, the target selection problem
is focused on determining the locations of the points sam-
pled in RS , i.e., determining the target set RS . The final
output is the shape descriptor vector fS|Ot

, whose compo-



Figure 1. Local features at a surface point Q.

nents are the pdf values evaluated at the target set RS .

3.1 Local Features

In this section, we describe the local geometric features
that we use in this work to characterize 3D surfaces (see
Figure 1).

Radial distance R measures the distance of a surface
point Q to the origin (centroid) and has taken place in many
different shape descriptors [16, 17]. Although it is not an
effective shape feature all by itself, when coupled to other
local surface features, it helps to manifest their distribution
at varying radii.

Radial direction R̂ is a unit length vector (R̂x, R̂y, R̂z)
collinear with the ray traced from the origin to a surface
point. This unit direction vector is obviously scale invariant.
When we augment the R̂-vector with the radial distance
R, the resulting 4-tuple (R, R̂x, R̂y, R̂z) can be viewed as
an alternative to the Cartesian coordinate representation of
the surface point. However in this parameterization, the
distance and direction information are decoupled. Hence,
the range of individual features can be determined indepen-
dently. In fact, the vector R̂ lies on the unit 2-sphere, and
the scalar R lies on the interval (0, rmax), where rmax de-
pends on the size of the surface.

Normal direction N̂ is simply the unit normal vector at
a surface point and represented as a 3-tuple (N̂x, N̂y, N̂z).
Similar to the radial direction R̂, the normal N̂ is scale in-
variant.

Radial-normal alignment A is the absolute cosine of the
angle between the radial and normal directions and is com-

puted as A =
∣∣∣〈R̂, N̂

〉∣∣∣. This feature measures crudely

how the surface deviates locally from sphericity. For exam-
ple, if the local surface approximates a spherical cap, then
the radial and normal directions align, and the alignment A
approaches unity.

Tangent-plane distance D stands for the absolute value
of the distance between the tangent plane at a surface point
and the origin. This scalar feature D is related to the ra-
dial distance R by D = R.A. The joining of D with
the normal direction N̂ provides a four-dimensional vector
(D, N̂x, N̂y, N̂z) that corresponds to the representation of
the local tangent plane as suggested in [25]. As in the ra-
dial case, this representation also separates the distance and
direction information associated with the tangent plane.

In additition to the radial-normal alignment A, the in-
teraction between the surface normal vector and the radial
direction can be quantified by taking the cross product be-
tween R̂ and N̂. The torque feature C = R̂ × N̂ can be
considered as a local rotational force when R̂ is viewed as
the position of a particle, which is under the influence of an
external force N̂.

Shape index SI , first proposed by Koenderink and van
Doorn [14], provides a local categorization of the shape into
primitive forms such as spherical cap and cup, rut, ridge,
trough, or saddle. In the present work, we consider the pa-
rameterization proposed in [6] given by

SI =
1
2
−

(
2
π

)
arctan

(
κ1 + κ2

κ1 − κ2

)
,

where κ1 and κ2 are the principal curvatures at the surface
point. SI is confined within the range [0, 1] and not defined
when κ1 = κ1 = 0 (planar patch). Since the shape index
SI is a function of the principal curvatures, it is considered
as a second-order feature. In the present work, we have used
Taubin’s algorithm [21] to estimate the principal curvatures.

3.2 Kernel Density Estimation

The density-based paradigm relies on the premise that
the features of similar shapes induce similar probability dis-
tributions. Given a set of observations {sk}K

k=1 within RS

for a random variable (scalar or vector) S, the kernel ap-
proach for its probability density estimation is formulated
as

f(s|Ot) =
K∑

k=1

wk |H |−1 K(H−1(s − sk)),

where K : R
m → R is a kernel function, H is a m × m

matrix composed of a set of design parameters called band-
width parameters, and wk is the importance weight associ-
ated with the kth observation sk [10, 18].

The contribution of each data point (observation) sk to
the density function f(s|Ot) at some target s ∈ RS is com-
puted through the kernel function K scaled by the matrix H



and the weight wk. Thus KDE involves a data set
{
sk

}K

k=1

with their associated importance weights {wk}K
k=1, the

choice of a kernel function K and the setting of the band-
width matrix H .

It is known that the particular functional form of the ker-
nel does not significantly affect the accuracy of the estima-
tor [10, 18]. In our scheme, we choose the Gaussian ker-
nel since there exists a fast algorithm, the fast Gauss trans-
form (FGT) [24], to rapidly evaluate large KDE sums in
O(K + N) instead of the O(KN)-complexity of the direct
evaluation.

The setting of the bandwidth matrix H has been shown to
be critical for accurate density estimation [10, 18], which in
turn affects shape discrimination and retrieval performance
[1, 2]. The optimal bandwidth for KDE depends on the un-
known density itself [1, 2], making the appropriate choice of
the bandwidth parameter a challenging problem. Intuitively
speaking, in applications such as object recognition where
class information can be acquired during the training phase,
the bandwidth parameter should be different for each class.
In the absence of class information, the bandwidth parame-
ter can be set at the object-level or at the database-level. In
[1, 2], we have experimentally demonstrated that the data-
base level setting yields better discrimination performance
by as much as 11%. Accordingly, we set the bandwidth pa-
rameter by averaging all object-level bandwidths given by
Scott’s rule [10, 18]. This averaging process has some in-
tuitive plausibility as it eliminates object-level details and
provides us with bandwidth parameters that accord class-
level information.

3.3 Marginalization

Marginalization is a tool to selectively remove a subset of
features from a multi-dimensional descriptor by integrating
out those features. To remove the information brought by a
certain component Sj from the pdf of some m-dimensional
feature S = (S1, . . . , Sm) ∈ RS , we use the marginaliza-
tion equation:

f (s1, . . . , sj−1, sj+1, . . . , sm|Ot) =∫
Sj

f (s1, . . . , sj , . . . , sm) dsj .

After marginalization, we obtain the pdf of a reduced fea-
ture S �j = (S1, . . . , Sj−1, Sj+1, . . . , Sm) ∈ RS �j , hence a
new descriptor deprived of any information regarding the
component Sj . The removal of a feature component re-
duces the dimension of the space RS by one (observe that
RS �j ⊂ RS), and hence a reduction in the descriptor size as
explained next. The target set RS for a multivariate density
is chosen as the Cartesian product of individual domains of
local feature components. Each marginalization of a feature

component reduces then the descriptor size by a factor equal
to the number of discrete values used in the target selection
for that component. For example, to obtain the target set
for the feature (R, R̂x, R̂y, R̂z), we first sample the scalar
radial distance R component in NR discrete values. For the
radial direction R̂, we sample the unit sphere in NR̂ dis-
crete directions. The target set for the whole multivariate
feature contains NR × NR̂ points, which is also the size
of the descriptor. Marginalizing R leads then to a reduc-
tion of the descriptor size by a factor NR. Marginalization
aims at simplifying the descriptor without compromising
its discrimination capability and is a tool to explore feature
components that are more effective for retrieval. Less dis-
criminating features can be identified by marginalization as
follows. We first obtain a full density-based descriptor in-
cluding all the available features in the limit of the computa-
tional resources and memory, and then we remove features
one at a time. The feature corresponding to the the least per-
formance loss after removal can be considered as the least
discriminating one.

3.4 Probability Density Suppression

The second approach we used to reduce the descriptor
size is to select a subset of significant target points from the
set RS and eliminate the rest. Let the unconditional pdf
f(s) of the feature S be

f(s) =
T∑

t=1

f(s|Ot)Pr {Ot} =
1
T

T∑
t=1

f(s|Ot),

where Pr {Ot} is the probability of occurence of the object
Ot and T is the total number of objects in the database. As-
suming that all objects are equiprobable, i.e., Pr {Ot} =
1/T , f(s) is obtained by averaging f(s|Ot)’s over all ob-
jects Ot, t = 1, . . . , T . The idea of suppression relies on the
premise that negligible pdf values would not be effective in
discriminating the shapes and can be removed from the de-
scriptor. Thus, for a selected threshold λ, we define a new

target set Rλ

S =
{
sn ∈ RS : f(sn) ≥ λ

}
and retain only

the pdf values at the targets in this new set for the descrip-
tor. The reduced descriptor for some object Ot becomes
then fλ

S|Ot
= [f(sn|Ot)]sn∈Rλ

S
. Notice that greedy compo-

nent selection methods are not practical when the descrip-
tor sizes are in the order of thousands. Suppressing small
pdf values, albeit not tantamount to component selection,
still serves the goal of reducing descriptor sizes. In other
words, probability density suppression, although not to the
full extent, guides us in choosing more informative feature
locations, i.e., targets.



4 Experiments

We have conducted retrieval experiments on two major
databases: the Princeton Shape Benchmark (PSB) [19] and
the Sculpteur database (SCU) [9]. PSB was split into a
training set (907 objects, 90 classes) and a test set (907 ob-
jects, 92 classes), while SCU consists of a single set (513
objects, 53 classes). The goals of the experiments were
two-fold: (i) to understand the interplay of feature-level
and descriptor-level combination alternatives to improve re-
trieval effectiveness, (ii) to evaluate the efficiency of our de-
scriptor simplification tools, marginalization and suppres-
sion.

Prior to descriptor computation, all models have been
normalized so that descriptors are translation, rotation, flip-
ping and scale invariant. For translation invariance, the ob-
ject’s center of mass is considered as the origin of the coor-
dinate frame. For rotation and flipping invariance, we ap-
plied Vranic’s continuous PCA [23]. For isotropic scale
invariance, we calculate a scale factor so that the average
point-to-origin distance is unity. We have used discounted
cumulative gain (DCG) and nearest neighbor (NN) scores
to assess the retrieval performance [19]. In all experiments,
we have used the L1-metric to measure the similarity (or the
distance) between two descriptors, since it is computation-
ally the cheapest measure with adequate discrimination for
density-based descriptors [2].

4.1 Combination at the feature-level

We first explore the impact of feature-level combinations
on the retrieval performance. Obviously, the KDE scheme
can be applied to any joining of the 13 features described
in Section 3.1. The whole space of combinations contains
213−1 = 8191 possibilities. However, estimation accuracy
and computational/memory constraints limit the maximum
number of features that can be joined. In fact, for dimen-
sions exceeding five, even with a sparse sampling of multi-
dimensional feature domains, we obtain descriptor sizes of
the order of 104, which are impractical. Hence, we limit
ourselves to three-, four-, or five-tuple feature combinations
in which case the cardinality of the combination space re-
duces to C3

13 + C4
13 + C5

13 = 2288. Even without an ex-
haustive search, a small subset of judiciously chosen com-
binations can indicate the potential of feature joining in im-
proving discrimination performance.

In Table 1, we give the results of a small subset of 13
combinations, where the shaded cells in any row show the
features taking role in that specific combination. Consider,
for example, row 1: the shaded cells pick the radial dis-
tance R and the radial direction R̂ so that this row corre-
sponds to the (R, R̂x, R̂y, R̂z)-combination. On the right-
most columns, we provide the size of the multivariate den-

sity descriptor, the NN and DCG scores respectively for
the three data sets (PSB training, PSB test and SCU). The
size of a descriptor equals the number of density evaluation
points, i.e., the targets (see Section 3.3). In the experiments,
as a general rule, for each scalar feature we have chosen 8
equally spaced points within its domain (9 for the shape in-
dex SI , in order to cover the shape primitives such as spher-
ical cap and cup, ridge, trough, saddle, etc., see [6, 13] for
details). For unit-norm directional features such as radial R̂
or normal Ĉ, we have sampled 128 points on the unit sphere
(by subdividing two-times the triangles of an octahedron in
four triangles). When a directional feature occurs without
its third coordinate, as for example (R̂x, R̂y), we choose 64
points. An exception to this case is (R, R̂x, R̂y, N̂x, N̂y)
where we have chosen 16 points for both (R̂x, R̂y) and
(N̂x, N̂y) pairs to control the descriptor size. Finally, for
the torque feature C, we have sampled 320 points within
the unit sphere.

For the three datasets, the (R, R̂x, R̂y, N̂x, N̂y) (row 4
in Table 1) and (R̂z , D, N̂x, N̂y) (row 10) configurations,
of sizes 2048 and 4096 respectively, are the two descrip-
tors with top performance. The better performance of
(R̂z, D, N̂x, N̂y) against other 4-tuple combinations sug-
gests that mixing pieces of radial and normal information
results in a more discriminating descriptor than any other
using solely the radial information (R, R̂x, R̂y, R̂z) or the
tangent plane information (D, N̂x, N̂y, N̂z). We also ob-
serve that adding the alignment information A into a con-
figuration significantly increases the discrimination perfor-
mance, at the cost of increased descriptor size. For instance
on PSB training set, the (R, R̂x, R̂y, R̂z)-configuration has
a DCG performance of 57% (row 1), while the augmented
(R, R̂x, R̂y, R̂z , A) has a DCG of 61.7% (row 2).

4.2 Combination at the descriptor-level

As pointed out in the previous section, there is a limit for
feature-level combinations with a dimension greater than
five: (i) the quality of density estimation degrades due the
curse of dimensionality [7], and (ii) descriptors become pro-
hibitively large and cannot be computed fast enough for on-
line applications. Descriptor-level combination provides an
alternative to extract most of the information brought by dif-
ferent features. However, in contrast to the feature-level
combination, it cannot make use of feature correlations in
discriminating shapes. Accordingly, it is a “suboptimal”
way to fuse shape information. In descriptor-level com-
bination, we concatenate the descriptors computed using
various feature combinations as in Section 4.1. We con-
sider pair-wise and triple concatenations of the 13 descrip-
tors (each indicated by its boldface number) presented in
Section 4.1. The performances of various descriptor combi-
nations are visualized in Figure 2 (pair-wise) and Figure 3



Table 1. Retrieval performance for feature-level combinations: gray cells denote the selected features
for the 13 multivariate density-based descriptors.

Figure 2. DCG improvements with pair-wise
descriptor combinations. Gray portion of
the bar: maximum DCG before combination;
white portion of the bar: DCG increase after
combination.

(triple). In Figure 2, the horizontal axis stands for descrip-
tors 1, 2, 3, and 5 of Table 1. Each bar series illustrates
DCG performance improvements after pair-wise combina-
tion with descriptors 6, 7, 8, 9, 10, 11, and 13 (displayed
on the top of each bar) one at a time. For instance, at de-
scriptor 1, the bar with the index 6 on the top corresponds
to the pair-wise combination 1+6, i.e., the concatenation of
the pdf of (R, R̂x, R̂y, R̂z) with that of (D, N̂x, N̂y, N̂z).

Figure 3. DCG improvements with triple de-
scriptor combinations. Gray portion of the
bar: maximum DCG before combination;
white portion of the bar: DCG increase after
combination.

The gray bars indicate the maximum of DCG performances
of the individual descriptors involved in that specific com-
bination, e.g., max(DCG1, DCG6). The white portion of
the bar on top of the gray one shows the DCG improve-
ment due to the combination. Figure 3 illustrates these gains
for triple combinations, that is, descriptor vectors resulting
from three concatenated descriptors. Accordingly, in Fig-
ure 3, the horizontal axis has labels of pair-wise combina-
tions, such as 1+6, 1+7,..., 5+9, 5+10. The darker portion
of the bar again indicates the maximum individual perfor-
mances of descriptors before combination, and the light por-
tion indicates the corresponding DCG improvement after



triple combination. In these experiments, the third descrip-
tor is always either the (R, Cx, Cy, Cz)-descriptor (11) or
(R, A, SI)-descriptor (13), as they bring in different shape
information than the pair-wise combinations displayed at
the horizontal axis of Figure 3.

The combinations have been intuitively selected so that
their corresponding feature sets are as disjoint as pos-
sible. For instance, we did not consider concatenating
the pdf of (R, R̂x, R̂y, R̂z) (descriptor 1) with that of
(R, R̂x, R̂y, R̂z, A) (descriptor 2) as the latter already con-
tains the information brought by the former. As expected,
descriptor combinations become effective only when the in-
volved features bring in a different kind of shape informa-
tion. A case in point involves (R, R̂x, R̂y, R̂z) (descriptor 1
in Table 1) and (D, N̂x, N̂y, N̂z) (descriptor 6 in Table 1).
For PSB training set, individual DCGs of these descriptors
are 57% and 59.8% respectively (see Table 1). After the
combination, the DCG performance boosts to 64% achiev-
ing a DCG improvement of 7% for PSB training set (6.7%
for PSB test set and 2.5% for Sculpteur database), as shown
in Figure 2. Furthermore, in this case, the descriptor size
is 2048 (2 × 1024) and quite reasonable in comparison to
other options. When we consider the triple combinations,
in the case where (R, A, SI)-descriptor (descriptor 13 in
Table 1) is concatenated to the previous descriptor com-
bination 1+6, DCG score has a further but smaller jump
to 65.2% for PSB training set, to 62.3% for PSB test set,
and to 75.7% for Sculpteur (Figure 3). Presently, this com-
bination constitutes the most interesting option as it has
the smallest size among other triple combinations tested
(1024 + 1024 + 576 = 2624 in total).

4.3 Reducing the size of descriptors

In this section, we explore descriptor reduction tools
that remove insignificant features and/or target points
with controlled sacrifice of retrieval effectiveness. These
tools concentrate on features and/or their targets with
substantial mass concentration. The previous two sec-
tions have indicated that the descriptor-level combina-
tion (1+6+13) of (R, R̂x, R̂y, R̂z), (D, N̂x, N̂y, N̂z) and
(R, A, SI)-densities yield the best performance and is the
most economical among triple combinations tested (DCG
= 62.3% on PSB test set and DCG = 75.7% on Sculpteur;
see Figure 3). Accordingly, it makes sense to explore this
particular descriptor for dimensionality reduction.

Reduction by marginalization: We marginalize with re-

spect to one of the directional components R̂x,R̂y ,R̂z (or
N̂x,N̂y,N̂z), since the radial (normal) direction is a unit-
norm vector as defined in Section 3.1, hence potentially re-
dundant. We admit that it is also possible to reach the same
goal by directly computing the descriptors of reduced size
via KDE, say the pdf of (R̂, R̂x, R̂y). This exercise, how-

ever, must be repeated for every conceivable pruned con-
figuration of (R, R̂x, R̂y, R̂z). Instead, once the density of
(R, R̂x, R̂y, R̂z) is at our disposal, the marginalization op-
erator allows us to obtain alternate reduced descriptors very
rapidly. We find that the marginalization tool brings to light
the flexibility of the density-based framework.

Table 2 displays individual NN and DCG performances
of (R, R̂x, R̂y, R̂z) (descriptor 1) and (D, N̂x, N̂y, N̂z) (de-
scriptor 6) and the performances obtained after removing
one of the R̂x,R̂y,R̂z (or N̂x,N̂y ,N̂z respectively). In Ta-
ble 2, 1 �x , 1 �y , 1 �z , 6 �x , 6 �y and 6 �z denote descriptors with
the removed feature being subscripted and crossed out. No-
tice that no performance loss is incurred in solo mode or in
combined mode except for a maximum of 3% DCG fluc-
tuation. Interestingly enough, for some cases there is even
an improvement of similar magnitude. However such vari-
ations are often due to permutations of retrieved models at
the end of the sorted list and hence should not be considered
as significant. The net effect of marginalization has been to
halve the descriptor size without loss of DCG performance.
In Table 2, we also see that the DCG of the triple combina-
tion obtained by adding (R, A, SI) (descriptor 13) persists
at its original level for all the data sets while the descriptor
size falls from 2624 to 1600.

Reduction by pdf suppression: We can achieve further
dimensionality reduction without compromising perfor-
mance by invoking the probability density suppression tool.
In Figure 4, we display the DCG profile for (R, R̂x, R̂y),
(D, N̂x, N̂z), and (R, A, SI) as a function of the suppres-
sion threshold λ on PSB training set. From this figure, it can
be seen than (D, N̂x, N̂z) is more susceptible to suppres-
sion than (R, R̂x, R̂y) and (R, A, SI) in terms of DCG loss.
Nevertheless, a fixed threshold level of 0.03 for suppress-
ing targets for (R, R̂x, R̂y), (D, N̂x, N̂z), and (R, A, SI)
on PSB training set incurs no DCG loss and reduces the
combined descriptor size to 1150 from 1600 (DCG of the
combination being 65.5% for PSB training set, 62.5% for
PSB test set and 75.8% for Sculpteur, see Table 3 for other
threshold values from 0.01 to 0.05).

Reduction by subspace methods: A more traditional ap-
proach to reduce dimensionality is to project the descrip-
tor vector onto a linear subspace using standard meth-
ods such as principal components analysis (PCA) or inde-
pendent component analysis (ICA) [7]. The PCA of our
(R, R̂x, R̂y, R̂z)-descriptor on PSB training set reveals that
the total variance in the first 270 components reaches 99%,
suggesting that significant dimensionality reduction can be
achieved. We have experimented by changing the projec-
tion dimension from 200 down to 10 (with increments of
10) and performed retrieval experiments using L1 and L2-
distances. We define the DCG efficiency as the ratio of the
DCG after PCA to the DCG of the full descriptor. In Fig-
ure 5, DCG efficiency profiles for both L1 and L2-distances



Table 2. Retrieval Performance After Mar-
ginalization (crossed subscript of the de-
scriptor denotes the feature marginalized
out).

Data sets
PSB Test SCU

Desc. Size NN DCG NN DCG
1 1024 54.6 54.9 75.0 71.3
1 �z 512 53.5 54.5 74.7 70.5
1 �y 512 52.7 54.3 76.0 71.4
1 �x 512 53.7 54.2 73.9 70.8
6 1024 59.1 57.8 74.5 72.0
6 �z 512 55.7 57.3 71.7 69.6
6 �y 512 57.0 58.0 74.3 72.7
6 �x 512 56.7 57.7 73.1 72.0

1 + 6 2048 64.2 61.7 77.8 73.8
1 �z + 6 �y 1024 62.7 62.4 78.0 74.3

1 + 6 + 13 2624 65.3 62.3 78.2 75.7
1 �z + 6 �y + 13 �x 1600 64.8 62.6 76.8 75.8

Table 3. Retrieval Performance After Mar-
ginalization and pdf Suppression for Com-
bined Descriptor 1+6+13

Datasets
PSB Test SCU

λ Size NN DCG NN DCG
0.00 1600 64.8 62.6 76.8 75.8
0.01 1343 64.6 62.6 77.2 75.9
0.02 1236 64.7 62.6 77.2 75.9
0.03 1150 64.5 62.5 77.2 75.8
0.04 1041 65.2 62.3 76.8 75.7
0.05 925 65.0 62.0 76.4 75.5

are shown. Note that L1 and L2 performances of the full
descriptor (size = 1024) are 57% and 54.8% respectively
in terms of DCG. In Figure 5, we see that, using the L1-
distance, we can never achieve 100% DCG efficiency al-
though the dimensionality reduction at the maximum possi-
ble DCG efficiency (≈ 96%) is significant (reduced descrip-
tor size is 50). On the other hand in the same figure, we ob-
serve that, when the L2-metric is used, we can improve the
DCG with respect to the full descriptor even after dimen-
sionality reduction (efficiency above 100%). This should
not be a big surprise as PCA is basically an L2 method.
Unfortunately, the L2-metric is not our preferred one as it
is always inferior to L1 in terms of DCG performance [2].
Nevertheless, reduction rates achieved by PCA are quite im-
pressive. In applications where a DCG loss at the order of

Figure 4. DCG profile as a function of the sup-
pression threshold parameter λ on PSB train-
ing set.

2-5% is affordable, PCA may become interesting. We have
also experimented with the ICA method and observed that
no significant gain can be obtained in comparison to PCA.

4.4 Comparison with other descriptors

In Figure 6, we show the DCG performance comparison
of 3D shape descriptors, on PSB test set. Priority-driven
search (PDS) constitutes an exception in this comparison,
as it does not exactly rely on descriptor paradigm but on
matching by feature correspondences. Quoted DCG val-
ues are either taken from their original sources or from the
works in [8, 19], whereas CAH and 3DHT methods are im-
plemented and tested by us. The performance of a represen-
tative density-based descriptor, namely the triple combina-
tion of (R, R̂x, R̂y), (D, N̂x, N̂z), and (R, A, SI)-densities
after probability suppression are also included in Figure 6.

We see that the proposed density-based descriptor gives
the best performance (DCG = 62.5%) among all the purely
3D methods [3, 11, 12, 15, 16, 17, 22, 25]. The 3D method
closest in performance to our descriptor is REXT with DCG
= 60.1%. The two methods with higher performance are
light field descriptor (LFD, DCG = 63.6% [5]) and depth
buffer images (DBI, DCG = 66.3% [4]), both of which rely
on 2D features extracted from 2D projections of 3D ob-
jects. The top discriminating (DCG = 75.9%) but compu-
tationally heavy PDS is outside the vector-based paradigm
(4-5 minutes per object to process the database, 100 KB
memory per object and 2.4 secs to match per query as the
authors report [8]). On the other hand, the computational



Figure 5. DCG efficiency profile after PCA-
based dimensionality reduction. Sample
point for the L1 and L2 metric shown on
the curves illustrate the economies achieved
with PCA with little change in DCG perfor-
mance

and memory advantages of the triple descriptor combination
of the (R, R̂x, R̂y), (D, N̂x, N̂z), and (R, A, SI)-densities
against its competitors is compelling. More importantly, on
a standard laptop PC (1.86 GHz CPU and 1 GB RAM),
a density-based descriptor of this size can be calculated
within half a second using the FGT algorithm [24]. For
instance, the extraction time for LFD, which is DCG-wise
1% superior to our descriptor, is 3.25 secs per object on
a comparable hardware configuration [19]. Apart from all
these performance figures, we think that the density-based
framework provides a sound formalism to process 3D local
surface features and paves the way towards the probabilistic
treatment of 3D surface information.

5 Conclusion

In this study, we have experimentally demonstrated the
benefits of feature-level and descriptor-level fusion for the
density-based 3D object retrieval. The descriptors presented
are also attractive because they are computationally much
less costly as compared to alternate descriptors in Figure 6
thanks to the fast Gauss transform [24]. In addition, these
descriptors based on multivariate density functions can be
simplified significantly without compromising performance
using marginalization and probability density suppression.

Feature fusion followed by KDE results in the multivari-
ate density descriptors, which proves to be more effective

Figure 6. DCGs of a selected group of state-
of-the-art descriptors on PSB test set.

than histogram-based methods [3, 11, 15, 16, 17, 25]. Com-
pared to the best case of scalar features (DCG≈ 40%), we
can improve the DCG performance by as much as 50%.
Furthermore, descriptor fusion augments the DCG perfor-
mance from the best case by as much as 4.5% DCG points
on PSB test set, yielding the most effective description
scheme among 3D methods [3, 11, 12, 15, 16, 17, 22, 25].
Fusion is effective especially when features and/or descrip-
tors involved reflect different aspects of shape information.
Less effective feature components can be selectively re-
moved from the descriptors by marginalization. In the best
case, single component marginalization reduce the descrip-
tor size as much as 50% without any performance loss. Af-
ter marginalization, descriptors can be further simplified by
pdf suppression by as much as 30% without losing any dis-
crimination ability; for example, the best performing de-
scriptor in Section 4.3 after marginalization has been re-
duced from the original size of 1600 to 1150. The pdf sup-
pression method, when used on its own, can reduce the de-
scriptor size by as much as 70% with a 5% loss in DCG
performance while the PCA method can provide 95% re-
duction in descriptor size.

At this stage, this work constitutes an extensive inves-
tigation on the discrimination capabilities of local surface
features for the 3D retrieval problem. Our future research
will be concentrated on exploring the feature and descriptor
level combination space using DCG-driven sequential for-
ward/backward floating search methods and on the statisti-
cal learning of dissimilarity measures between descriptors
for retrieval.
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